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Foreword

Water resources are special. In their natural states
they are beautiful. People like to live and vaca-
tion near rivers, lakes and coasts. Water is also
powerful. Water can erode rock, alter existing
landscapes and form new ones. Life on this
planet depends on water. Most of our economic
activities consume water. All the food we grow,
process and eat requires water. Much of our
waste is transported and assimilated by water.
The importance of water to our well-being is
beyond question. Our dependence on water will
last forever.

So, what is the problem? The answer is simply that water, although
plentiful, is not distributed as we might wish. There is often too much or too
little, or what exists is too polluted or too expensive. A further problem is that
the overall water situation is likely to further deteriorate as a result of global
changes. This is a result not only of climatic change but also of other global
change drivers such as population growth, land use changes, urbanization and
migration from rural to urban areas, all of which will pose challenges never
before seen. Water obviously connects all these areas and any change in these
drivers has an impact on it. Water has its own dynamics that are fairly non-
linear. For example, while population growth in the twentieth century
increased threefold—from 1.8 to 6 billion people—water withdrawal during
the same period increased sixfold! That is clearly unsustainable. Freshwater,
although a renewable resource, is finite and is very vulnerable. If one con-
siders all the water on Earth, 97.5 % is located in the seas and oceans and what
is available in rivers, lakes and reservoirs for immediate human consumption
comprises no more than a mere 0.007 % of the total. This is indeed very
limited and on average is roughly equivalent to 42,000 km® per year.

If one looks at the past 30 years only in terms of reduction in per capita
water availability in a year the picture is even more disturbing. While in 1975
availability stood at around 13,000 m® per person per year, it has now
dropped to 6000 m*; meanwhile water quality has also severely deteriorated.
While this cannot be extrapolated in any meaningful manner, it nevertheless
indicates the seriousness of the situation. This will likely be further exacer-
bated by the expected impacts of climate change. Although as yet unproven
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to the required rigorous standards of scientific accuracy, increasing empirical
evidence indicates that the hydrological cycle is accelerating while the
amount of water at a given moment in time is remains the same. If this
acceleration hypothesis is true then it will cause an increase in the frequency
and magnitude of flooding. At the other end of the spectrum, the prevailing
laws of continuity mean that the severity and duration of drought will also
increase. These increased risks are likely to have serious regional implica-
tions. Early simulation studies suggest that wet areas will become even more
humid while dry areas will become increasingly arid. This will not occur
overnight; similarly, appropriate countermeasures will need time to establish
policies that integrate the technical and social issues in a way that takes
appropriate consideration of the cultural context.

Tremendous efforts and political will are needed to substantially reduce
the number of human beings who have no access to safe drinking water and
adequate sanitation facilities respectively. The substantial growth of human
populations—especially as half of humanity already lives in urban areas—
and the consequent expansion of agricultural and industrial activities with a
high water demand, have only served to increase problems of water avail-
ability, quality—and in many regions—waterborne disease. There is now an
increasing urgency in the UN system to protect water resources through
better management. Data on the scale of deforestation with subsequent land
use conversion, soil erosion, desertification, urban sprawl, loss of genetic
diversity, climate change and the precariousness of food production through
irrigation, all reveal the growing seriousness of the problem. We have been
forced to recognize that society’s activities can no longer continue unchecked
without causing serious damage to the very environment and ecosystems we
depend upon for our survival. This is especially critical in water scarce
regions, many of which are found in the developing world and are dependent
on water from aquifers that are not being recharged as fast as their water is
being withdrawn and consumed. Such practices are clearly not sustainable.

Proper water resources management requires consideration of both supply
and demand. The mismatch of supply and demand over time and space has
motivated the development of much of the water resources infrastructure that
is in place today. Some parts of the globe witness regular flooding as a result
of monsoons and torrential downpours, while other areas suffer from the
worsening of already chronic water shortages. These conditions are often
aggravated by the increasing discharge of pollutants resulting in a severe
decline in water quality.

The goal of sustainable water management is to promote water use in such
a way that society’s needs are both met to the extent possible now and in the
future. This involves protecting and conserving water resources that will be
needed for future generations. UNESCO’s International Hydrological Pro-
gramme (IHP) addresses these short- and long-term goals by advancing our
understanding of the physical and social processes affecting the globe’s water
resources and integrating this knowledge into water resources management.
This book describes the kinds of problems water managers can and do face
and the types of models and methods one can use to define and evaluate
alternative development plans and management policies. The information
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derived from these models and methods can help inform stakeholders and
decision-makers alike in their search for sustainable solutions to water
management problems. The successful application of these tools requires
collaboration among natural and social scientists and those in the affected
regions, taking into account not only the water-related problems but also the
social, cultural and environmental values.

On behalf of UNESCO it gives me great pleasure to introduce this book. It
provides a thorough introduction to the many aspects and dimensions of
water resources management and presents practical approaches for analyzing
problems and identifying ways of developing and managing water resources
systems in a changing and uncertain world. Given the practical and academic
experience of the authors and the contributions they have made to our pro-
fession, I am confident that this book will become a valuable asset to those
involved in water resources planning and management. I wish to extend our
deepest thanks to Profs. Pete Loucks and Eelco van Beek for offering their
time, efforts and outstanding experience, which is summarized in this book
for the benefit of the growing community of water professionals.

Andras Szollosi-Nagy

Past Deputy Assistant Director-General, UNESCO

and Past Secretary, International Hydrological Programme

Past Rector Magnificus, UNESCO-IHE, Delft, The Netherlands



Water resource systems planning and management issues are rarely simple.
Demands for reliable supplies of clean water to satisfy the energy, food, and
industrial demands of an increasing population and to maintain viable natural
ecosystems are growing. This is happening at the same time changes in our
climate are increasing the risks of having to deal with too little or too much
water in many river basins, watersheds, and urban areas. Societies are
becoming increasingly aware of the importance of water and its management
and use; their governing institutions are becoming increasingly involved in
water resources development and management decision-making processes.
To gain a better understanding of the complex interactions among all the
hydrologic, ecologic, economic, engineering and social components of water
resource systems, analyses based on systems perspectives are useful. While
analyses of such complex systems can be challenging, integrated systems
approaches are fundamental for identifying and evaluating options for
improving system performance and security for the benefit of all of us.

Just how well we are able to plan and manage our water availability,
quality, and variability is a major determinant of the survival of species, the
functioning and resilience of ecosystems, the strength of economies, and the
vitality of societies. To aid in the analysis of planning and managing options,
a variety of modelling approaches have been developed. This book intro-
duces the science and art of developing and applying various modelling
approaches in support of water resources planning and management. Its main
emphasis is on the practice of developing and using models to address
specific water resources planning and management issues and problems.
Their purpose is to provide relevant, objective, timely and meaningful
information to those who are responsible for deciding how we develop,
manage, and use our water resources.

Readers of this book are not likely to learn the art of systems modelling
and analyses unless they actually do it. The modelling approaches, examples
and case studies contained in this book, together with the exercises offered at
the end of most chapters, we believe and hope, will facilitate the process of
becoming a skilled water resources systems modeler, analyst and planner.
This has been our profession, indeed our hobby and source of enjoyment, and
we can highly recommend it to others.

Water resource systems planning and management is a multidisciplinary
activity. The modelling and analysis of water resources systems involves



inputs from the applicable natural and social sciences and from the people,
the stakeholders, who will be impacted. It is a challenge.

Although we have attempted to incorporate into each chapter current
approaches to water resources systems planning and analysis, this book does
not pretend to be a review of the state-of-the-art of water resources systems
analysis. Rather it is intended to introduce readers to the art of developing
and using models and modelling approaches applied to the planning and
managing of water resources systems. We have tried to organize our dis-
cussion in a way useful for teaching and self-study. The contents reflect our
belief that the most appropriate methods for planning and management are
often the simpler ones, chiefly because they are easier to understand and
explain, require less input data and time, and are easier to apply to specific
issues or problems. This does not imply that more sophisticated and complex
models are less useful. Sometimes their use is the only way one can provide
the needed information.

In this book, we attempt to give readers the knowledge to make appro-
priate choices regarding model complexity. These choices will depend in part
on factors such as the issues being addressed and the information needed, the
level of accuracy desired, the availability of data and their cost, and the time
required and available to carry out the analysis. While many analysts have
their favourite modelling approaches, the choice of a particular model and
solution method should be based on the knowledge of various modelling
approaches and their advantages and limitations. There is no one best
approach for analyzing all the issues one might face in this profession.

This book assumes readers have had some mathematical training in
algebra, calculus, geometry and the use of vectors and matrices. Readers will
also benefit from some background in probability and statistics and some
exposure to micro-economic theory and welfare economics. Some knowl-
edge of hydrology, hydraulics and environmental engineering will also be
beneficial, but not absolutely essential. Readers wanting an overview of some
of natural processes that take place in watersheds, river basins, estuaries and
coastal zones can refer to the Appendices (available on the internet along
with the book itself). An introductory course in optimization and simulation
methods, typically provided in either an operations research or an economic
theory course, can also benefit the reader, but again it is not essential.

Chapter 1 introduces water resources systems planning and management
and reviews some examples of water resources systems projects in which
modelling has had a critical role. These projects also serve to identify some
of the current issues facing water managers in different parts of the world.
Chapter 2 introduces the general modelling approach and the role of models
in water resources planning and management activities. Chapter 3 begins the
discussion of optimization and simulation modelling and how they are
applied and used in practice. Chapter 4 focuses on the development and use
of various optimization methods for the preliminary definition of infras-
tructure design and operating policies. These preliminary results define
alternatives that usually need to be further analyzed and improved using
simulation methods. The advantages and limitations of different
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optimization/simulation approaches are illustrated using some simple water
allocation, reservoir operation and water quality management problems.

Chapter 5 extends this discussion of optimization to problems character-
ized by more qualitative objectives and/or constraints. In addition, it intro-
duces some of the more recently developed methods of statistical modelling,
including artificial neural networks and evolutionary search methods
including genetic algorithms and genetic programming. This chapter expects
interested readers desiring more detail will refer to other books and papers,
many of which are solely devoted to just these topics. Chapters 6 through 8
are devoted to probabilistic models, uncertainty and sensitivity analyses.
These methods are useful not only for identifying more realistic, reliable, and
robust infrastructure designs and operating policies for the given hydrolog-
ical variability and uncertain parameter values and objectives but also for
estimating some of the major uncertainties associated with model predictions.
Such probabilistic and stochastic models can also help identify just what
model input data are needed and how accurate those data need be with
respect to their influence on the decisions being considered.

Water resources planning and management today inevitably involve
multiple goals or objectives, many of which may be conflicting. It is difficult,
if not impossible, to please all stakeholders all the time. Models containing
multiple objectives can be used to identify the tradeoffs among conflicting
objectives. This is the information useful to decision-makers who must
decide what to do given these tradeoffs among conflicting performance cri-
teria that stakeholders care about. Chapter 9 on multi-objective modelling
identifies various types of economic, environmental and physical objectives,
and some commonly used ways of including multiple objectives in opti-
mization and simulation models.

Chapter 10 is devoted to various approaches for modelling water quality
in surface water bodies. Chapter 11 focuses on modelling approaches for
multiple purpose water quantity planning and management in river basins.
Chapter 12 zooms into urban areas and presents some ways of analyzing
urban water systems. Finally, Chap. 13 describes how projects involving the
analyses of water resource systems can be planned and executed.

Following these thirteen chapters are four appendices. They are not
contained in the book but are available on the internet where this book can be
downloaded. They contain descriptions of (A) natural hydrological and
ecological processes in river basins, estuaries and coastal zones, (B) moni-
toring and adaptive management, (C) drought management, and (D) flood
management.

For university teachers, the contents of this book represent more than can
normally be covered in a single quarter or semester course. A first course
might include Chaps. 1 through 5, and possibly Chaps. 9 and 10 or 11 or 12
or 13 depending on the background and interest of the participants in the
class. A second course could include Chaps. 6 through 8 and/or any com-
bination of Chaps. 10 through 12, as desired. Exercises are offered at the end
of each chapter, and instructors using this text in their academic courses can
contact the authors for the solutions of those exercises if desired.
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Many have helped us prepare this book. Jery Stedinger contributed to
Chaps. 6, 7 and 8, Nicki Villars helped substantially with Chap. 10, and Jozef
Dijkman contributed a major portion related to flood management. Tjitte
Nauta, Laura Basco Carrera and Thijs Stoffelen contributed to Chap. 13.
Others who offered advice and who helped review earlier chapter drafts
include Vladan Babovic, Martin Baptist, Henk van den Boogaard, Herman
Breusers, Harm Duel, Herman Gerritsen, Peter Gijsbers, Jos van Gils, Simon
Groot, Karel Heynert, Joost Icke, Hans Los, Marcel Marchand, Tony Minns,
Erik Mosselman, Arthur Mynett, Roland Price, Erik Ruijgh, Johannes Smits,
Mindert de Vries and Micha Werner. Engelbert Vennix and Hans van Ber-
gem created most of the figures and tables in this book. We again thank
Deltares and all these individuals and others who provided assistance and
support on various aspects during the entire time in 2005 and when this
second edition was being prepared.

We have also benefited from the comments of Profs. Jan-Tai Kuo at
National Taiwan University in Taipei, Jay Lund at the University of
California at Davis, Daene McKinney of the University of Texas in Austin,
Peter Rogers at Harvard University in Cambridge, MA, Tineke Ruijgh-van
der Ploeg at TU-Delft, Robert Traver at Villanova University in Philadelphia,
and Jinwen Wang at Huazhong University of Science and Technology in
Wubhan, all of whom have used earlier drafts of this book in their classes.
Finally we acknowledge with thanks the critical support of Andras Szoll6-
si-Nagy, recently retired as rector of UNESCO-IHE in Delft, NL, and the
publishing staff at UNESCO for publishing the first edition of this book and
making its electronic version free and unrestricted. We are especially grateful
to Michael Luby of Springer for all his assistance and guidance, and to
Deltares and UNESCO-IHE in Delft, NL, for sharing the cost of publishing
this second edition. We have written this book for an international audience,
and hence we are especially grateful and pleased to have this connection to
and support from Deltares and UNESCO-IHE.

Most importantly, we wish to acknowledge and thank all our teachers,
students and colleagues throughout the world who have taught us all we
know and added to the quality of our professional and personal lives. We
have tried our best to make this book error free, but inevitably somewhere
there will be flaws. For that, we apologize and take responsibility for any
errors of fact, judgment or science that may be contained in this book. We
will be most grateful if you let us know of any or have other suggestions for
improving this book.

Ithaca, NY, USA Daniel P. Loucks
Delft, The Netherlands Eelco van Beek
July 2016
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1.1 Introduction

Water resource systems have benefited both
people and their economies for many centuries.
The services provided by such systems are
multiple. Yet in many regions of the world they
are not able to meet even basic drinking water
and sanitation needs. Nor can many of these
water resource systems support and maintain
resilient biodiverse ecosystems. Typical causes
include inappropriate, inadequate and/or degra-
ded infrastructure, excessive withdrawals of river
flows, pollution from industrial and agricultural
activities, eutrophication resulting from nutrient
loadings, salinization from irrigation return
flows, infestations of exotic plant and animals,
excessive fish harvesting, flood plain and habitat
alteration from development activities, and
changes in water and sediment flow regimes. The
inability of water resource systems to meet the
diverse needs for water often reflect failures in
planning, management, and decision-making—
and at levels broader than water. Planning,
developing, and managing water resources to
ensure adequate, inexpensive, and sustainable
supplies and qualities of water for both humans
and natural ecosystems can only succeed if we
recognize and address the causal socioeconomic
factors, such as inadequate education, corruption,
population pressures, and poverty.

Over the centuries, surface and ground waters
have been a source of water supply for agricultural,
municipal, and industrial consumers. Rivers have
provided hydroelectric energy and inexpensive

© The Author(s) 2017

ways of transporting bulk cargo. They have pro-
vided people water-based recreational opportuni-
ties and have been a source of water for wildlife
and their habitats. They have also served as a
means of transporting and transforming waste
products that are discharged into them. The
quantity and quality regimes of streams and rivers
have been a major factor in governing the type,
health, and biodiversity of riparian and aquatic
ecosystems. Floodplains have provided fertile
lands for agricultural crop production and rela-
tively flat lands for the siting of roads and railways
and commercial and industrial complexes. In
addition to the economic benefits that can be
derived from rivers and their floodplains, the aes-
thetic beauty of most natural rivers has made lands
adjacent to them attractive sites for residential and
recreational development. Rivers and their flood-
plains have generated, and, if managed properly,
can continue to generate, substantial cultural,
economic, environmental, and social benefits for
their inhabitants.

Human activities undertaken to increase the
benefits obtained from rivers and their flood-
plains may also increase the potential for costs
and damages such as when the river is experi-
encing periods of droughts, floods, and heavy
pollution. These costs and damages are physical,
economic, environmental, and social. They result
because of a mismatch between what humans
expect or demand, and what nature offers or
supplies. Human activities tend to be based on
the “usual or normal” range of river flow con-
ditions. Rare or “extreme” flow conditions
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outside these normal ranges will continue to
occur, and possibly with increasing frequency as
climate change experts suggest. River-dependent
human activities that cannot adjust to these
extreme flow conditions will incur losses.

The planning of human activities involving
rivers and their floodplains must consider certain
hydrologic facts. One of these facts is that sur-
face water flows and aquifer storage volumes
vary over space and time. They are also finite.
There are limits to the amounts of water that can
be withdrawn from them. There are also limits to
the amounts of pollutants that can be discharged
into them. Once these limits are exceeded, the
concentrations of pollutants in these waters may
reduce or even eliminate the benefits that could
be obtained from other users of the resource.

Water resources professionals have learned
how to plan, design, build, and operate structures
that together with nonstructural
increase the benefits people can obtain from the
water resources contained in aquifers, lakes,
rivers, and estuaries. However, there is a limit to
the services one can expect from these resources.
Rivers, estuaries, and coastal zones under stress
from over development and overuse cannot reli-
ably meet the expectations of those depending on
them. How can these resources best be managed
and used? How can this be accomplished in an
environment of uncertain and varying supplies
and uncertain and increasing demands, and con-
sequently of increasing conflicts among individ-
vals having different interests in their
management and use? The central purpose of
water resources planning, management, and
analysis activities is to address, and if possible
answer, these questions. These questions have
scientific, technical, political (institutional), and
social dimensions. Thus water resources plan-
ning processes and products are must.

River basin, estuarine, and coastal zone man-
agers—those responsible for managing the
resources in those areas—are expected to manage
those resources effectively and efficiently, meet-
ing the demands or expectations of all users, and
reconciling divergent needs. This is no small task,
especially as demands increase, as the variability

measures
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of hydrologic and hydraulic processes become
more pronounced, and as stakeholder expecta-
tions of system performance increase in com-
plexity. The focus or goal is no longer simply to
maximize economic net benefits while making
sure the distribution of those benefits is equitable.
There are also environmental and ecological
goals to consider. Rarely are management ques-
tions one-dimensional, such as how can we pro-
vide, at acceptable costs, more high-quality water
to municipalities, industry, or to irrigation areas in
the basin. Now added to that question is how
would those withdrawals affect the downstream
hydrologic water quantity and quality regimes,
and in turn the riparian and aquatic ecosystems.

Problems and opportunities change over time.
Just as the goals of managing and using water
change over time, so do the processes of plan-
ning to meet these changing goals. Planning
processes evolve not only to meet new demands,
expectations, and objectives, but also in response
to new perceptions of how to plan and manage
more effectively.

This chapter reviews some of the issues
requiring water resources planning and manage-
ment. It provides some context and motivation
for the following chapters that outline in more
detail our understanding of “how to plan” and
“how to manage” and how computer-based pro-
grams and models can assist those involved in
these activities. Additional information is avail-
able in many of the references listed at the end of
this chapter.

1.2 Planning and Management
Issues: Some Case Studies

Managing water resources certainly requires
knowledge of the relevant physical sciences and
technology. But at least as important, if not more
so, are the multiple institutional, social, or
political issues confronting water resources
planners and managers. The following brief
descriptions of some water resources planning
and management studies at various geographic
scales illustrate some of these issues.
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1.2.1 Kurds Seek Land, Turks Want

Water

The Tigris and Euphrates Rivers (Fig. 1.1) cre-
ated the “Fertile Crescent” where some of the
first civilizations emerged. Today their waters are
critical resources, politically as well as geo-
graphically. In one of the world’s largest public
works undertakings, Turkey’s Southeast Anatolia
Project includes 13 irrigation and hydropower
schemes, and the construction of 22 dams and 19
hydroelectric power plants on both the Tigris and
the Euphrates. Upon completion, it is expected to
provide up to 25% of the country’s electricity.

Its centerpiece, the Ataturk Dam (Fig. 1.2) on
the Euphrates River, is already completed. In the
lake formed behind the dam, sailing and swim-
ming competitions are being held on a spot
where for centuries there was little more than
desert (Fig. 1.3).

When the multireservoir project is completed
it is expected to increase the amount of irrigated
land in Turkey by 40% and provide up to a

quarter of the country’s electric power needs.
Planners hope this can improve the standard of
living of six million of Turkey’s poorest people,
most of the Kurds, and thus undercut the appeal
of revolutionary separatism. It will also reduce
the amount of water Syria and Iraq believe they
need—water that Turkey fears might ultimately
be used in anti-Turkish causes.

The region of Turkey where Kurd’s predom-
inate is more or less the same region covered by
the Southeast Anatolia Project, encompassing an
area about the size of Austria. Giving that region
autonomy by placing it under Kurdish self-rule
could weaken the central Government’s control
over the water resource that it recognizes as a
keystone of its future power.

In other ways also, Turkish leaders are using
their water as a tool of foreign as well as domestic
policy. Among their most ambitious projects
considered is a 50-mile undersea pipeline to carry
water from Turkey to the parched Turkish enclave
on northern Cyprus. The pipeline, if actually
built, will carry more water than northern Cyprus

Mediterranean
Sea

Saudi Arabia

______

Fig. 1.1 The Tigris and Euphrates Rivers in Turkey, northern Syria, and Iraq
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Fig. 1.2 Ataturk Dam on the Euphrates River in Turkey (DSI)

Fig. 1.3 Water sports on Ataturk Reservoir on the Euphrates River in Turkey (DSI)
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can use. Foreign mediators, frustrated by their
inability to break the political deadlock on
Cyprus, are hoping that the excess water can be
sold to the ethnic Greek republic on the southern
part of the island as a way of promoting peace.

As everyone knows, the Middle East is cur-
rently (2016) witnessing considerable turmoil so
who knows the fate of any water resources project
in this region, including the one just described in
Turkey and the following example in Jordan. One
can only hope that the management and use of
this scarce resource will lead to more peaceful
resolutions of conflicts not only involving water
but of other political issues as well.

1.2.2 Sharing the Water of the
Jordan River Basin: Is
There a Way?

A growing population—approximately 12 mil-
lion people—and intense economic development
in the Jordan River Basin (Fig. 1.4) are placing
heavy demands on its scarce freshwater resour-
ces. This largely arid region receives less than
250 mm of rainfall each year, yet total water use
for agricultural and economic activities has been
steadily increasing. This plus encroaching urban
development have degraded many sources of
high-quality water in the region.

The combined diversions by the riparian water
users have changed the river in its lower course
into little better than a sewage ditch. From the
1300 million cubic meters (mcm) of water that
flowed into the Dead Sea in the 1950s only a
small fraction remains at present. In normal years
the flow downstream from Lake Tiberias (also
called the Sea of Galilee or Lake Kinneret) is
some 60 million cubic meters (mcm)—about
10% of the natural discharge in this section. It
mostly consists of saline springs and sewage
water. These flows are then joined by what
remains of the Yarmouk, by some irrigation
return flows, and by winter runoff, adding up to
an annual total of from 200-300 mcm. Both in
quantity and quality this water is unsuitable for
irrigation and does not sufficiently supply natural
systems either. The salinity of the Jordan River

reaches up to 2000 parts per million (ppm) in the
lowest section, which renders it unfit for crop
irrigation. Only in flood years is fresh water
released into the lower Jordan Valley.

One result of this increased pressure on fresh-
water resources is the deterioration of the region’s
wetlands. These wetlands are important for water
purification and flood and erosion control. As
agricultural activities expand, wetlands are being
drained, and rivers, aquifers, lakes, and streams
are being polluted with runoff containing fertiliz-
ers and pesticides. Reversing these trends by
preserving natural ecosystems is essential to the
future availability of fresh water in the region.

To ensure that an adequate supply of fresh,
high-quality water is available for future gener-
ations, Israel, Jordan, and the Palestinian
Authority will have to work together to preserve
aquatic ecosystems (White et al. 1999). Without
these natural ecosystems, it will be difficult and
expensive to sustain high-quality water supplies.
The role of ecosystems in sustaining water sup-
plies has largely been overlooked in the context
of the region’s water supplies. Vegetation con-
trols storm water runoff and filters polluted water,
and it reduces erosion and the amount of sedi-
ment that makes its way into water supplies.
Streams assimilate wastewater, lakes store clean
water, and surface waters provide habitat for
many plants and animals.

The Jordan River Basin just like most river
basins should be evaluated and managed as a
whole system, to permit the comprehensive
assessment of the effects of water management
options on wetlands, lakes, the lower river, and
the Dead Sea coasts. Damage to ecosystems and
loss of animal and plant species should be
weighed against the potential benefits of devel-
oping land and creating new water resources. For
example, large river-management projects that
divert water to dry areas have promoted intensive
year-round farming and urban development, but
available river water is declining and becoming
increasingly polluted. Attempting to meet current
demands solely by withdrawing more ground
and surface water could result in widespread
environmental degradation and depletion of
freshwater resources.
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Fig. 1.4 The Jordan River
between Israel and Jordan
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There are policies that if implemented could
help preserve the capacity of the Jordan River to
meet future demands. Most of the options relate
to improving the efficiency of water use—that is,
they involve conservation and better use of pro-
ven technologies. Also being considered are
policies that emphasize economic efficiency and
reduce overall water use. Charging higher rates
for water use in peak periods, and surcharges for
excessive use, would encourage conservation. In
addition, new sources of fresh water can be
obtained by capturing rainfall through rooftop
cisterns, catchment systems, and storage ponds.
However before such measures are required, one
should assess the impact on local aquifer
recharge, storage, and withdrawals.

Thus there are alternatives to a steady deteri-
oration of the water resources of the Jordan Basin.
They will require coordination and cooperation

among all those living in the basin. Will this be
possible?

1.2.3 Mending the “Mighty
and Muddy” Missouri

Nearly two centuries after an epic expedition
through the Western US in search of a northwest
river passage to the Pacific Ocean, there is little
enchantment left to the Missouri River. Shown in
Figs. 1.5 and 1.6, it has been dammed, diked,
and dredged since the 1930s mainly to control
floods and float cargo barges. The river nick-
named the “Mighty Missouri” and the “Big
Muddy” by its explorers is today neither mighty
nor muddy. The conservation group American
Rivers perennially lists the Missouri among the
USA’s 10 most endangered rivers.
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Colombia

Missouri

Rio Grande

Fig. 1.5 Major river basins in the continental US

EO0II1217d

Fig. 1.6 The Missouri Basin’s Reservoirs (not to scale)
constructed for navigation and flood control

Its wilder upper reaches are losing their cot-
tonwood trees to dam operations and cattle that
trample seedlings along the river’s banks. Its vast
middle contains multiple dams that hold back
floods, generate power, and provide pools for
boats and anglers.

Its lower one-third is a narrow canal some-
times called “The Ditch” that is deep enough for

Tennessee

commercial towboats. Some of the river’s banks
are armored with rock and concrete retaining
walls that protect half a million acres of farm
fields from flooding. Once those floods produced
and maintained marshlands and side streams—
habitats for a wide range of wildlife. Without
these habitats, many wild species are unable to
thrive, and in some cases even survive.
Changes to restore at least some of the Missouri
to a more natural state are being implemented.
These changes add protection of fish and wildlife
habitat to the list of objectives to be achieved by the
government agencies managing the Missouri. The
needs of wildlife are now as important as other
competing interests on the river including naviga-
tion and flood control. This is in reaction, in part, to
the booming $115 million-a-year outdoor recre-
ation industry. Just how much more emphasis will
be given to these back-to-nature goals depends on
whether the Missouri River Basin Association, an
organization representing eight states and 28 Native
American tribes, can reach a compromise with the
traditional downstream uses of the river.



1.2.4 The Endangered Salmon

Greater Seattle in the northwestern US state of
Washington may be best known around the
world for Microsoft, but residents know it for
something less flashy: its dwindling stock of wild
salmon. The Federal Government has placed
seven types of salmon and two types of trout on
its list of threatened or endangered species.
Saving the fish from extinction could slow land

1 Water Resources Planning and Management: An Overview

development in one of the fastest growing
regions of the U.S.

Before the Columbia River and its tributaries in
NW US were blocked with dozens of dams, about
10-16 million salmon made the annual run back
up to their spawning grounds (Fig. 1.7).In 1996, a
little less than 1 million did. But the economy of
the NW depends on the dams and locks that have
been built in the Columbia that provide cheap
hydropower production and navigation.

Lo
\
—y
\,
British Columbia
\: _________________ =g -t - y-. @
~ I
~o_ ’
. N
£
LY
Co/Umb,
. ]
Washington Little Lower
. Lower Goose Granite
S onumental  4am  damh
- N dam !
E Y
S.G‘ v Coll ja Ri 1o
S 0 umbiqg River 4rboEr~ =
= dam
onn of &
Day dam §g§
)
i
Oregon :
i
i
_____________________________ i
Fm——— ..
!
California : Nevada
I
1

I- o
! =
i =
i_ g
!
1
!
i
i i
\‘ l
N .
- !
p !
3 !
L, i
. i
i !
\' :
l_ I
i‘ '
N Alberta !
| ! |
---------- oo mamemamo e
\
l\
N
\4
\
N
.
.I
I
3 Montana
3
Sa/mo,, - N
- . ]
//'0, N\
! Sm e
R X
.‘. ¢ ‘\Ii
\ /'~ S |
i
Idaho i
1
1
i
i
1
Snake :
River i
1
__________________________________ I
1
i i
! Utah !
1 1
- 1
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For a long time, engineers tried to modify the
system so that fish passage would be possible. As
shown in Fig. 1.8b, this included even the use of
trucks to transport captured juvenile salmon
around dams for release downstream. (It is not
clear that the trucks will be there when the fish
return to spawn upstream of the dams.) These
measures have not worked all that well. Still too
many young fish enter the hydropower turbines
on their way down the river. Now, as the debate
over whether or not to remove some dams takes

Fig. 1.8 A salmon
swimming upstream

(a) and measures taken to
protect young juvenile
salmon pass by
hydropower dams on their
way downstream (b) (US
Fish and Wildlife Service
and US Army Corps of
Engineers, Pacific region)

place, fish are caught and trucked around the
turbines. The costs of keeping these salmon
alive, if not completely happy, are enormous.
Over a dozen national and regional environ-
mental organizations have joined together to
bring back salmon and steelhead by modifying or
partially dismantling five federal dams on the
Columbia and Snake Rivers. Partial removal of
the four dams on the lower Snake River in
Washington State and lowering the reservoir
behind John Day dam on the Columbia bordering
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Oregon and Washington (see Fig. 1.8) should
help restore over 200 miles of vital river habitat.
Running the rivers more like rivers may return
salmon and steelhead to harvestable levels of the
1960s before the dams were built.

Dismantling part of the four Lower Snake
dams will leave most of each dam whole. Only
the dirt bank connecting the dam to the riverbank
will be removed. The concrete portion of the dam
will remain in place, allowing the river to flow
around it. The process is reversible and, the
Campaign argues, it will actually save taxpayers
money in planned dam maintenance, by elimi-
nating subsidies to shipping industries and
agribusinesses, and by ending current salmon
recovery measures that are costly. Only partially
removing the four Lower Snake River dams and
modifying John Day dam will help restore rivers,
save salmon, and return balance to the North-
west’s major rivers.

1.2.5 Wetland Preservation:
A Groundswell of Support
and Criticism

The balmy beach community of Tiger Point
near Pensacola, Florida, bordering the Gulf of
Mexico, is booming with development. New
subdivisions, a Wal-Mart discount retail store
and a recreation center dot the landscape.

Most—if not all—of this neighborhood was
once a wetland that soaked up rain during
downpours. Now, water runs off the parking lots
and the roofs and into resident’s living rooms.
Some houses get flooded nearly every year.

A federal agency oversees wetland develop-
ment. Critics say the agency is permitting in this
area one of the highest rates of wetland loss in the
nation. Obviously local developers wish they did
not have to deal with the agency at all. The ten-
sion in Tiger Point reflects the debate throughout
the US about whether the government is doing
enough—or too much—to protect the nation’s
environment, and in this case, its wetlands.

Water Resources Planning and Management: An Overview

Environmentalists and some homeowners
value wetlands because they help reduce water
pollution and floods, as well as nurture a diverse
wildlife population. But many landowners and
developers see the open wetlands as prime ter-
ritory for building houses and businesses, rather
than for breeding mosquitoes. They view exist-
ing federal wetland rules as onerous, illogical,
and expensive.

While some areas such as Tiger Point have
residents who want stricter laws to limit wetlands
development, others—such as the suburbs
around Seattle—have people who long for less
strict rules.

Federal regulators had tried to quell the con-
troversy with a solution known as wetlands miti-
gation. Anyone who destroys a wetland is required
to build or expand another wetland somewhere
else. Landowners and developers also see miti-
gation as a way out of the torturous arguments over
wetlands. However, studies have shown many
artificial marshes do not perform as well as those
created by nature (NRC 2001). Many of the new,
artificial wetlands are what scientists call the “ring
around the pond” variety: open water surrounded
by cattails. Furthermore, the federal agency issu-
ing permits for wetland replacement do not have
the resources to monitor them after they are
approved. Developers know this.

1.2.6 Lake Source Cooling:
Aid to Environment,
or Threat to Lake?

It seems to be an environmentalist’s dream: a
cost-effective system that can cool some
10 million square feet of high school and
university buildings simply by pumping cold
water from the depths of a nearby lake (Fig. 1.9).
No more chlorofluorocarbons, the refrigerants
that can destroy protective ozone in the atmo-
sphere and at a cost substantially smaller than for
conventional air conditioners. The lake water is
returned to the lake, with a few added calories.
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Fig. 1.9 The cold deep waters of Lake Cayuga are being used to cool the buildings of a local school and university

(Ithaca City Environmental Laboratory)

However, a group of local opponents insists
that Cornell University’s $55 million lake-source-
cooling plan that replaced its aging air condition-
ers is actually an environmental threat. They
believe it could foster algal blooms. Pointing to 5
years of studies, thousands of pages of data, and
more than a dozen permits from local and state
agencies, Cornell’s consultants say the system
could actually improve conditions in the lake. Yet
another benefit, they say, is that the system would
reduce Cornell’s contribution to global warming
by reducing the need to burn coal to generate
electricity.

For the most part, government officials agree.
But a small determined coalition of critics from
the local community argue over the expected

environmental impacts, and over the process that
took place in getting the required local, state, and
federal permits approved. This is in spite of the
fact that the planning process, that took over
5 years, requested and involved the participation
of all interested stakeholders (that would partic-
ipate) from the very beginning. Even the local
Sierra Club chapter and biology professors at
other universities have endorsed the project.
However, in almost every project where the
environmental impacts are uncertain, there will
be debates among scientists as well as stake-
holders. In addition, a significant segment of
society distrusts scientists anyway. “This is a
major societal problem,” wrote a professor and
expert in the dynamics of lakes. “A scientist says
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X and someone else says Y and you’re got chaos.
In reality, we are the problem. Every time we
flush our toilets, fertilize our lawns, gardens and
fields, or wash our cars we contribute to the
nutrient loading of the lake.”

The project has now been operating for over a
decade, and so far no adverse environmental
effects have been noticed at any of the many
monitoring sites.

1.2.7 Managing Water in the Florida
Everglades

The Florida Everglades (Fig. 1.10) is the largest
single wetland in the continental United States.
In the mid-1800s it covered a little over nine
million acres, but since that time the historical
Everglades has been drained and half of the area
devoted to agriculture and urban development.
The remaining wetland areas have been altered
by human disturbances both around and within
them. Water has been diverted for human uses,
flows have been lowered to protect against
floods, nutrient supplies to the wetlands from
runoff from agricultural fields and urban areas
have increased, and invasions of nonnative or
otherwise uncommon plants and animals have
out-competed native species. Populations of
wading birds (including some endangered spe-
cies) have declined by 85-90% in the last
half-century, and many species of South Flor-
ida’s mammals, birds, reptiles, amphibians, and
plants are either threatened or endangered.

The present management system of canals,
pumps, and levees (Fig. 1.11) will not be able to
provide adequate water supplies to agricultural
and urban areas, or sufficient flood protection,
let alone support the natural (but damaged)
ecosystems in the remaining wetlands. The sys-
tem is not sustainable. Problems in the greater
Everglades ecosystem relate to both water quality
and quantity, including the spatial and temporal
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distribution of water depths, flows, and flooding
durations—called hydroperiods. Issues arise
because of variations from the natural/historical
hydrologic regime, degraded water quality, and
the sprawl from fast-growing urban areas.

To meet the needs of the burgeoning popula-
tion and increasing agricultural demands for
water, and to begin the restoration of Everglades’
aquatic ecosystem to a more natural regime, an
ambitious plan has been developed by the U.S.
Army Corps of Engineers and its local sponsor,
the South Florida Water Management District.
The proposed Corps plan is estimated to cost over
$8 billion. The plan and its Environmental
Impact Statement (EIS) have received input from
many government agencies and nongovernmental
organizations, as well as from the public at large.

The plan to restore the Everglades is ambi-
tious and comprehensive, involving change of
the current hydrologic regime in the remnant
Everglades to one that resembles a more natural
one, reestablishment of marshes and wetlands,
implementation of agricultural best management
practices, enhancements for wildlife and recre-
ation, and provisions for water supply and flood
control.

Planning for and implementing the restoration
effort requires application of state-of-the-art large
systems analysis concepts, hydrological and
hydroecological data and models incorporated
within decision support systems, integration of
social sciences, and monitoring for planning and
evaluation of performance in an adaptive man-
agement context. These large, complex chal-
lenges of the greater Everglades restoration effort
demand the most advanced, interdisciplinary,
and scientifically sound analysis capabilities that
are available. They also require the political will
to make compromises and to put up with the
lawsuits by anyone possibly disadvantaged by
some restoration measure.

Who pays for all this? The taxpayers of
Florida and the taxpayers of the U.S.
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Fig. 1.10 Scenes of the
Everglades in southern
Florida (South Florida
Water Management
District)
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Fig. 1.11 Pump station on a drainage canal in southern Florida (South Florida Water Management District)

1.2.8 Restoration of Europe’s Rivers
and Seas

1.2.8.1 North and Baltic Seas

The North and Baltic Seas (shown in Fig. 1.12)
are the most densely navigated seas in the world.
Besides shipping, military, and recreational uses,
an offshore oil industry and telephone cables
cover the seabed. The seas are rich and produc-
tive with resources that include not only fish but
also crucial minerals (in addition to oil) such as
gas, sand, and gravel. These resources and
activities play major roles in the economies of the
surrounding countries.

Being so intensively used and surrounded by
advanced industrialized countries, pollution
problems are serious. The main pollution sources
include various wastewater outfalls, dumping by
ships (of dredged materials, sewage sludge, and
chemical wastes) and operational discharges
from offshore installations. Deposition of atmo-
spheric pollutants is an additional major source
of pollution.

Those parts of the seas at greatest risk from
pollution are where the sediments come to rest,
where the water replacement is slowest and
where nutrient concentrations and biological
productivity are highest. A number of warning
signals have occurred.

Algal populations have changed in number
and species. There have been algal blooms,
caused by excessive nutrient discharge from land
and atmospheric sources. Species changes show
a tendency toward more short-lived species of
the opportunistic type and a reduction, some-
times to the point of disappearance, of some
mammals and fish species and the sea grass
community. Decreases of ray, mackerel, sand eel,
and echinoderms due to eutrophication have
resulted in reduced plaice, cod, haddock and dab,
mollusk and scoter.

The impact of fishing activities is also con-
siderable. Sea mammals, sea birds, and Baltic
fish species have been particularly affected by the
widespread release of toxins and pollutants
accumulate in the sediments and in the food web.
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Fig. 1.12 Europe’s major rivers and seas
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Some animals, such as the gray seal and the sea
eagle, are threatened with extinction.

Particular concern has been expressed about
the Wadden Sea that serves as a nursery for many
North Sea species. Toxic PCB contamination, for
example, almost caused the disappearance of
seals in the 1970s. Also, the 1988 massive seal
mortality in the North and Wadden Seas,
although caused by a viral disease, is still thought
by many to have a link with marine pollution.

Although the North Sea needs radical and
lengthy treatment it is probably not a terminal
case. Actions are being taken by bordering
countries to reduce the discharge of wastes into
the sea. A major factor leading to agreements to
reduce discharges of wastewaters has been the
verification of predictive pollutant circulation
models of the sea that identify the impacts of
discharges from various sites along the sea
boundary.

1.2.8.2 The Rhine

The map of Fig. 1.13 shows the areas of the nine
countries that are part of river Rhine basin. In the
Dutch area of the Rhine basin, water is partly
routed northward through the IJssel and west-
ward through the highly interconnected river
systems of the Rhine, Meuse, and Waal.

About 55 million people live in the Rhine
River basin and about 20 million of those people
drink the river water.

In the mid 1970s, some called the Rhine the
most romantic sewer in Europe. In November
1986, a chemical spill degraded much of the
upper Rhine’s aquatic ecosystem. This damaging
event was reported worldwide. The Rhine was
again world news in the first 2 months of 1995,
when its water level reached a height that occurs
on average once in a century. In the Netherlands,
some 200,000 people, 1,400,000 pigs and cows,
and 1,000,000 chickens had to be evacuated.
During the last 2 months of the same year there
was hardly enough water in the Rhine for navi-
gation. It is fair to say these events have focused
increased attention on what needs to be done to
“restore” and protect the Rhine.

To address just how to restore the Rhine, it is
useful to look at what has been happening to the
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river during the past 150 years. The Rhine was
originally a natural watercourse. It is the only
river connecting the Alps with the North Sea. To
achieve greater economic benefits from the river,
it was engineered for navigation, hydropower,
water supply, and flood protection. Flood plains
now “protected” from floods, provided increased
land areas suitable for development. The main
stream of the Rhine is now considerably shorter
and narrower and deeper than it was originally.

From an economic development point of
view, the engineering works implemented in the
river and its basin worked. The Rhine basin is
now one of the most industrialized regions in the
world. The basin is characterized by intensive
industrial and agricultural activities. Some 20%
of the world’s chemical industry is located in the
Rhine River basin. The River is reportedly the
busiest shipping waterway in the world, con-
taining long canals with regulated water levels.
These canals connect the Rhine and its tributaries
with the rivers of almost all the surrounding river
basins including the Danube River. This provides
water transport to and from the North and Black
Seas.

From an environmental and ecological view-
point, and from the viewpoint of flood control as
well, the economic development that has taken
place over the past two centuries has not worked
perfectly. The concerns growing from the recent
toxic spill and floods as from a generally
increasing interest by the inhabitants of the basin
in environmental and ecosystem restoration and
the preservation of natural beauty, has resulted in
basin-wide efforts to rehabilitate the basin to a
more “living” sustainable entity.

A Rhine Action Programme was created to
revive the ecosystem. The goal of that program is
the revival of the main stream as the backbone of
the ecosystem, particularly for migratory fish,
and the protection, maintenance, and the revival
of ecologically important areas along the Rhine.
The plan, implemented in the 1990s, was given
the name “Salmon 2000”. The return of salmon
to the Rhine is seen as a symbol of ecological
revival. A healthy salmon population will need to
swim throughout the river length. This will pose
a challenge, as no one pretends that the
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Fig. 1.13 The Rhine River Basin of Western Europe and its extension in The Netherlands
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engineering works that provide navigation and
hydropower benefits, but which also inhibit fish

passage, are no longer needed or desired.

1.2.8.3 The Danube

The Danube River (shown in Fig. 1.14) is in the
heartland of Central Europe. Its basin includes to
a larger extent the territories of 15 countries. It
additionally receives runoff from small catch-
ments located in four other countries. About
90 million people live in the basin. This river
encompasses perhaps more political, economic,
and social variations than arguably any other
river basin in Europe.

The river discharges into the Black Sea. The
Danube delta and the banks of the Black Sea
have been designated a Biosphere Reserve by
UNESCO. Over half of the Delta has been
declared a “wet zone of international signifi-
cance.” Throughout its length the Danube River
provides a vital resource for drainage, commu-
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recreation, and tourism. It is considered to be an
ecosystem with irreplaceable environmental
values.

More than 40 dams and large barrages plus
over 500 smaller reservoirs have been con-
structed on the main Danube River and its
tributaries. Flood control dikes confine most of
the length of the main stem of the Danube River
and the major tributaries. Over the last 50 years
natural alluvial flood plain areas have declined
from about 26,000 km” to about 6000 km”.

There are also significant reaches with river
training works and river diversion structures.
These structures trap nutrients and sediment in
the reservoirs. This causes changes in down-
stream flow and sediment transport regimes that
reduce the ecosystems’ habitats both longitudi-
nally and transversely, and decrease the effi-
ciency of natural purification processes. Thus
while these engineered facilities provide impor-
tant opportunities for the control and use of the

nications, transport, power generation, fishing, river’s resources, they also illustrate the
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difficulties of balancing these important eco-
nomic activities with environmentally sound and
sustainable management.

The environmental quality of the Danube River
is also under intense pressure from a diverse range
of human activities, including point source and
nonpoint source agricultural, industrial, and
municipal wastes. Because of the poor water
quality (sometimes affecting human health) the
riparian countries of the Danube river basin have
been participating in environmental management
activities on regional, national, and local levels for
several decades. All Danube countries signed a
formal Convention on Cooperation for the Pro-
tection and Sustainable Use of the Danube Riverin
June 1994. The countries have agreed to take “...
all appropriate legal, administrative and technical
measures to improve the current environmental
and water quality conditions of the Danube River
and of the waters in its catchment area and to
prevent and reduce as far as possible adverse
impacts and changes occurring or likely to be
caused.”

1.2.9 Flood Management
on the Senegal River

As on many rivers in the tropical developing
world, dam constructions on the Senegal (and
conventional dam management strategies) can
change not only the riverine environment but also

Fig. 1.15 Senegal River
and its Manantali Reservoir
more than 1000 km
upstream in Mali
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the social interactions and economic productivity
of farmers, fishers, and herders whose livelihoods
depend on the annual flooding of valley bottom-
lands. Although much of the Senegal River flows
through a low rainfall area, the naturally occur-
ring annual flooding supported a rich and bio-
logically diverse ecosystem. Living in a
sustainable relationship with their environment,
small-land holders farmed sandy uplands during
the brief rainy season, and then cultivated the clay
plains as floodwaters receded to the main channel
of the river. Livestock also benefited from the
succession of rain-fed pastures on the uplands and
flood-recession pastures on the plains. Fish were
abundant. As many as 30,000 tons were caught
yearly. Since the early 1970s, small irrigated rice
schemes added a fifth element to the production
array: rain-fed farming, recession farming, herd-
ing, fishing, and irrigation.

Completion of the Diama salt intrusion barrage
near the mouth of the river between Senegal and
Mauritania and Manantali High Dam more than
1000 km upstream in Mali (Fig. 1.15), and the
termination of the annual flood have had adverse
effects on the environment. Rather than insulating
the people from the ravages of drought, the dam
release policy can accelerate desertification and
intensify food insecurity. Furthermore, anticipa-
tion of donor investments in huge irrigation
schemes has, in this particular case, lead to the
expulsion of non-Arabic-speaking black Mauri-
tanians from their floodplain lands.
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This is a common impact of dam construction:
increased hardships of generally politically pow-
erless people in order that urban and industrial
sectors may enjoy electricity at reduced costs.

Studies in the Senegal Valley by anthropolo-
gists, hydrologists, agronomists, and others sug-
gest that it may be entirely economically feasible
to create a controlled annual “artificial flood,”
assuring satisfaction of both urban, industrial,
and rural demands for the river’s water and
supporting groundwater recharge, reforestation,
and biodiversity.

Because of these studies, the government of
Senegal ended its opposition to an artificial flood,
and its development plans for the region are now
predicated on its permanence. However, due to
the common belief that releasing large quantities
of water to create an artificial flood is incompat-
ible with maximum hydropower production, the
other members of the three-country consortium
managing the dams—Mali and Mauritania—have
resisted accepting this policy.

1.2.10 Nile Basin Countries Striving
to Share Its Benefits

The Nile River (Fig. 1.16) is one of the major
rivers of the world, serving millions and giving
birth to entire civilizations. It is one of the world’s
longest rivers, traversing about 6695 km from the
farthest source of its headwaters in Rwanda and
Burundi through Lake Victoria, to its delta in
Egypt on the Mediterranean Sea. Its basin
includes 11 African countries (Burundi, DR
Congo, Egypt, Eritrea, Ethiopia, Kenya, Rwanda,
South Sudan, The Sudan, and Tanzania) and
extends for more than 3 million square kilometers
which represents about 10% of Africa’s land mass
area. The basin includes the Sudd wetland system
in South Sudan.

Nile Basin countries are today home to more
than 437 million people and of these, 54%
(238 million) live within the basin and expect
benefits from the management and use of the
shared Nile Basin water resources.
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Notwithstanding the basin’s natural and
environmental endowments and rich cultural
history, its people face considerable challenges
including persistent poverty with millions living
on less than a dollar a day; extreme weather
events associated with climate variability and
change such as floods and droughts; low access
to water and sanitation services; deteriorating
water quality; and very low access rate to modern
energy with most countries below 20% access
level. The region also has a history of tensions
and instability both between states and internal to
states.

Cooperative management and development
could bring a vast range of benefits including
increased hydropower and food production; bet-
ter access to water for domestic use; improved
management of watersheds and reduced envi-
ronmental degradation; reduced pollution and
more control over damage from floods and
droughts. Recognizing this the Nile Basin Ini-
tiative was created as a regional intergovern-
mental partnership that seeks to develop the
River Nile in a cooperative manner, share sub-
stantial socioeconomic benefits, and promote
regional peace and security. The partnership
includes 10 Member States namely Burundi, DR
Congo, Egypt, Ethiopia, Kenya, Rwanda, South
Sudan, The Sudan, Tanzania, and Uganda. Eri-
trea participates as an observer. NBI was con-
ceived as a transitional institution until a
permanent institution can be created.

The partnership is guided by a Shared
Vision: “To achieve sustainable socio-economic
development through equitable utilization of,
and benefit from, the common Nile Basin Water
resources.” The shared belief is that countries
can achieve better outcomes for all the peoples
of the Basin through cooperation rather than
competition. It is supported by a “Shared Vision
Planning Model” built by experts from all the
basin countries. The model is designed to run
different scenarios and assess the basin-wide
impacts of different management policies and
assumptions that any country may wish to
perform.
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Fig. 1.16 The Nile River Basin
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1.2.11 Shrinking Glaciers at Top
of the World

As shown in Fig. 1.17, Tibet lies north of India,
Nepal, Bhutan, and Myanmar, west of China, and
south of East Turkistan. The highest and largest
plateau on Earth, it stretches some 1500 miles
(2400 km) from east to west, and 900 miles
(1448 km) north to south, an area equivalent in
size to the United States region east of the Mis-
sissippi River. The Himalayas form much of its
southern boundary, and Tibet’s average altitude is
so high—11,000 feet (3350 km) above sea
level—that visitors often need weeks to acclimate.

The Tibetan Plateau serves as the headwaters
for many of Asia’s largest rivers, including the
Yellow, Yangtze, Mekong, Brahmaputra, Sal-
ween, and Sutlej, among others. A substantial
portion of the world’s population lives in the
watersheds of the rivers whose sources lie on the
Tibetan Plateau.

Recent studies—including several by the
Chinese Academy of Sciences—have docu-
mented a host of serious environmental chal-
lenges involving the quantity and quality of
Tibet’s freshwater reserves, most of them caused
by industrial activities. Deforestation has led to
large-scale erosion and siltation. Mining, manu-
facturing, and other human and industrial activ-
ities are producing record levels of air and water
pollution in Tibet, as well as elsewhere in China

Fig. 1.17 China, India,
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(Wong 2013). Together, these factors portend
future water scarcity that could add to the
region’s political volatility.

Most important is that the region’s glaciers are
receding at one of the fastest rates anywhere in
the world, and in some regions of Tibet by three
3 m per year (IPPC 2007). The quickening
melting and evaporation is raising serious con-
cerns in scientific and diplomatic communities,
in and outside China, about Tibet’s historic
capacity to store more freshwater than anyplace
on earth, except the North and South Poles.
Tibet’s water resources, they say, have become
an increasingly crucial strategic political and
cultural element that the Chinese are intent on
managing and controlling.

1.2.12 China, a Thirsty Nation

Why does China care about the freshwater in
Tibet? With more than a quarter of its land
classified as desert, China is one of the planet’s
most arid regions. Beijing is besieged each spring
by raging dust storms born in Inner Mongolia
where hundreds of square miles of grasslands are
turning to desert each year. In other parts of the
nation, say diplomats and economic development
specialists, Chinese rivers are either too polluted
or too filled with silt to provide all of China’s
people with adequate supplies of freshwater.
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Chinese authorities have long had their eyes
on Tibet’s water resources. They have proposed
building dams for hydropower and spending
billions of dollars to build a system of canals to
tap water from the Himalayan snowmelt and
glaciers and transport it hundreds of miles north
and east to the country’s farm and industrial
regions.

But how long that frozen reservoir will last is
in doubt. In attempting to solve its own water
crisis, China could potentially create widespread
water shortages among its neighbors.

While the political issues involving Tibet are
complex, there is no denying that water plays a
role in China’s interest in the region. The water
of Tibet may prove to be one of its most
important resources in the long run—for China,
and for much of southern Asia. Figuring out how
to sustainably manage that water will be a key to
reducing political conflicts and tensions in the
region.

1.2.13 Managing Sediment in China’s
Yellow River

The scarcity of water is not the only issue China
has to address. So is sediment, especially in the
Yellow River (Fig. 1.18). The Yellow River basin
is the cradle of Chinese civilization, with agri-
cultural societies appearing on the banks of the
river more than 7000 years ago. The Yellow River
originates in the Qinghai-Tibetan plateau and
discharges into the Bohai Gulf in the Yellow sea.
The basin is traditionally divided into the upper,
middle, and lower reaches, which can be descri-
bed as three down-sloping steps: the Tibetan
Plateau, the Loess Plateau, and the alluvial plain.
Key management issues are many, but the most
visible one is sediment (Figs. 1.19 and 1.20).
The high sediment load of the Yellow River is
a curse if the sediment deposits on the bed of the
channel and reduces its capacity, thereby
increasing the risk of flooding. Also, rapid
deposition of sediment in reservoirs situated
along the river is a problem as it reduces their
effectiveness for flood control and water storage.

Another major management issue is the
ecosystem health of the river. The relative scar-
city of water creates a tension between allocating
water for the benefit of river health, and for direct
social and economic benefit. Irrigation uses 80%
of the water consumed from the river, with the
rest supplying industry, and drinking water for
cities along the river and outside of the basin
(Tianjin, Cangzhou and Qingdao). During the
1980s and 1990s the lower river dried up nearly
every year, resulting in lost cereal production,
suspension of some industries, and insufficient
water supplies for more than 100,000 residents,
who had to queue daily for drinking water. As
well as costing around RmB40 billion in lost
production, there was a serious decline in the
ecological health of the river.

The diversity of habitat types and extensive
areas of wetlands within the Ramsar-listed Yel-
low River Delta support at least 265 bird species.
The birds, fish, and macroinvertebrates in the
delta rely on healthy and diverse vegetation
communities, which in turn depend upon on
annual freshwater flooding and the associated
high sediment loads. Degradation of the
ecosystem of the Delta has been documented,
especially from the late-1990s, due to increased
human activities and a significant decrease in the
flow of freshwater to the Delta wetlands. This has
led to saltwater intrusion and increased soil
salinity. Restoration activities involving the
artificial delivery of freshwater to the wetlands
began in 2002.

1.2.14 Damming the Mekong
(S.E. Asia), the Amazon,
and the Congo

The world’s most biodiverse river basins—the
Amazon, Congo, and Mekong—are attracting
hydropower developers. While hydropower pro-
jects address energy needs and offer the potential
of a higher standard of living, they also can
impact the river’s biodiversity, especially fish-
eries. The Amazon, Congo, and Mekong basins
hold roughly one-third of the world’s freshwater
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Fig. 1.18 The Yellow River Basin in China

fish species, most of which are not found else-
where. Currently more than 450 additional dams
are planned for these three rivers (see Figs. 1.22
and 1.23) (Winemiller et al. 2016). Many of the
sites most appropriate for hydropower production
also are the habitats of many fish species. Given
recent escalation of hydropower development in
these basins, planning is needed to reduce bio-
diversity loss, as well as other adverse environ-
mental, social, and economic impacts while
meeting the energy needs of the basins.

The Mekong River (Fig. 1.21) flows some
4200 km through Southeast Asia to the South
China Sea through Tibet, Myanmar (Burma),
Vietnam, Laos, Thailand, and Cambodia. Its
“development” has been restricted over the past

several decades due to regional conflicts, indeed
conflicts that have altered the history of the world.
Now that these conflicts are not resulting in mil-
itary battles (at this writing), investment capital is
becoming available to develop the Mekong’s
resources for improved fishing, irrigation, flood
control, hydroelectric power, tourism, recreation,
and navigation. The potential benefits are sub-
stantial, but so are the environmental, ecological,
and social risks (Orr et al. 2012).

The economic value of hydroelectric power
currently generated from the Mekong brings in
welcome income however the environmental
impacts are harder to quantify. Today some
60 million people (12 million households) live in
the Lower Mekong Basin, and 80% rely directly
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Fig. 1.19 Sediment flows in China’s Yellow River. http://yellowriver-china.blogspot.com/2011/09/book-review-on-

flood-discharge-and.html

on the river system for their food and livelihoods.
Most of these households would be affected by
alterations to fish availability since fish is their
main source of dietary protein. The food security
impacts on these people due to the existing and
proposed dam building and operation in Cam-
bodia, Laos, Thailand, and Vietnam remain rel-
atively unexplored. Dam builders have often
failed to recognize, or wish to ignore, the crucial
role of inland fisheries in meeting food security
needs.

During some months of the year the lack of
rainfall causes the Mekong to fall dramatically.
Salt water may penetrate as much as 500 km
inland. In other months the flow can be up to
30 times the low flows, causing the water in the
river to back up into wetlands and flood some
12,000 km? of forests and paddy fields in the

Vietnamese delta region alone. The ecology of a
major lake, Tonle Sap, in Cambodia depends on
these backed up waters.

While flooding imposes risks on the inhabi-
tants of the Mekong flood plain, there are also
distinct advantages. High waters deposit
nutrient-rich silts on the low-lying farmlands,
thus sparing the farmers from having to transport
and spread fertilizers on their fields. Also, shal-
low lakes and submerged lands provide spawn-
ing habitats for about 90% of the fish in the
Mekong basin. Fish yield totals over half a mil-
lion tons annually.

What will happen to the social fabric and to the
natural environment if the schemes to build big
dams (see Fig. 1.22a) across the mainstream of
the Mekong are implemented? Depending on
their design, location, and operation, they could
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Fig. 1.20 Dams can be
designed and operated to
remove some of the
sediment that is trapped in
the upstream reservoir

disrupt the current fertility cycles and the habitats
and habits of the fish in the river resulting from
the natural flow and sediment regimes. Increased
erosion downstream from major reservoirs is also
a threat. Add to these possible adverse impacts
the need to evacuate and resettle thousands of
people displaced by the lake behind the dams.
How will they be resettled? And how long will it
take them to adjust to new farming conditions?
And will there even be a Delta? Together with sea
level rise and a blockage of Mekong’s sediment to

the Delta, its survival as a geologic feature, and as
a major source of food, is in doubt.

There have been suggestions that a proposed
dam in Laos could cause deforestation in a
wilderness area of some 3000 km?. Much of the
wildlife, including elephants, big cats, and other
rare animals, would have to be protected if they
are not to become endangered. Malaria-carrying
mosquitoes, liver fluke, and other disease bearers
might find ideal breeding grounds in the mud
flats of the shallow reservoir. These are among
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Fig. 1.22 Lancang/Mekong River where reservoirs are
being planned on the river itself (a) and on many of its
tributaries (b). a http://khmerization.blogspot.com/2013/
10/wwf-expresses-alarm-over-laos-decision.html,  6/10/
13, and b reprinted from Wild and Loucks 2014, with
permission. © 2014. American Geophysical Union

the types of issues that need to be considered
now that increased development seems likely.
Similar issues face those who are planning
similar hydropower dam developments in the other
two most biodiverse river basins in the world—the
Amazon and the Congo (Fig. 1.23). Clarifying the
trade-offs between energy (economic), environ-
mental, and social goals can inform governments
and funding institutions as they make their dam
siting, design, and operating decisions.
Hydropower accounts for more than
two-thirds of Brazil’s energy supply, and over
300 new Amazon dams have been proposed.
Impacts of these dams would extend beyond
direct effects on rivers to include relocation of
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human populations and expanding deforestation
associated with new roads. Scheduled for com-
pletion in 2016, Brazil’s Belo Monte hydropower
complex was designed with installed capacity of
11,233 MW, ranking it the world’s third largest.
But it could also set a record for biodiversity loss
owing to selection of a site that is the sole habitat
for many species. The Congo has far fewer dams
than the Amazon or Mekong, yet most power
generated within the basin is from hydropower.
Inga Falls, a 14.5-km stretch of the lower Congo
that drops 96 m to near sea level, has greater
hydropower potential than anywhere else. The
Inga I and II dams, constructed in the 1970s and
1980s, currently yield 40% of the 2132-MW
installed capacity. Planned additional dams (Inga
II and Grand Inga) would harness as much as
83% of the Congo’s annual discharge, with most
of the energy to be exported. Grand Inga would
divert water and substantially reduce flow for at
least 20 km downstream from the falls. Again,
many trade-offs involved with dam building, and
all calling for comprehensive systems planning
and analyses to identify them.

1.3 So, Why Plan, Why Manage?

Water resources planning and management
activities are usually motivated, as they were in
each of the previous section’s case examples, by
the realization that there are problems to solve
and/or opportunities to obtain increased benefits
by changing the management and use of water
and related land resources. These benefits can be
measured in many different ways. The best way
to do it is often not obvious. Whatever way is
proposed may provoke conflict. Hence there is
the need for careful study and research, as well as
full stakeholder involvement, in the search for
the best compromise plan or management policy.

Reducing the frequency and/or severity of the
adverse consequences of droughts, floods, and
excessive pollution are common goals of many
planning and management exercises. Other rea-
sons include the identification and evaluation of
alternative measures that may increase the
available water supplies, hydropower, improve
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Fig. 1.23 Fish diversity and dam locations in the
Amazon and Congo basins. In addition to basin-wide
biodiversity summaries (upper left), each basin can be
divided into ecoregions (white boundaries). Approximate

recreation and/or navigation, and enhance water
quality and aquatic ecosystems. Quantitative
system performance criteria can help one judge
the relative net benefits, however measured, of
alternative plans and management policies.

System performance criteria of interest have
evolved over time. They have ranged from being
primarily focused on safe drinking water just a
century ago to multipurpose economic develop-
ment a half-century ago to goals that now include
environmental and ecosystem restoration and
protection, aesthetic and recreational experi-
ences, and more recently, sustainability (ASCE
1998; GTT 2014).

Some of the multiple purposes served by a
river can be conflicting. A reservoir used solely
for hydropower, or water supply, is better able to
meet its objectives when it is full of water. On the
other hand, a reservoir used solely for down-
stream flood control is best left empty so it can
store more of the flood flows when they occur.
A single reservoir serving all three purposes
introduces conflicts over how much water to
store in it and discharge from it, i.e., how it
should be operated. In basins where diversion

number of species (black numbers) and the total species
richness (shades of green) found in ecoregions differ
widely (Winemiller et al. 2016)

demands exceed the available supplies, conflicts
will exist over water allocations. Finding the best
way to manage, if not resolve, these conflicts are
reasons for planning.

1.3.1 Too Little Water

Issues involving inadequate supplies to meet
demands can result from too little rain or snow.
They can also result from patterns of land and
water use. They can result from growing urban-
ization, the growing needs to meet instream flow
requirements, and conflicts over private property
and public rights regarding water allocations.
Other issues can involve transbasin water trans-
fers and markets, objectives of economic effi-
ciency versus the desire to keep nonefficient
activities viable, and demand management mea-
sures, including incentives for water reuse and
water reuse financing.

Measures to reduce the demand for water in
times of supply scarcity should be identified and
agreed upon before everyone must cope with an
actual water scarcity. The institutional authority
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to implement drought measures when their des-
ignated “triggers”—such as storage volumes in
reservoirs—have been met should be established
before they are needed. Such management mea-
sures may include increased groundwater
abstractions to supplement low-surface water
flows and storage volumes. Conjunctive use of
ground and surface waters can be sustainable as
long as the groundwater aquifers are recharged
during conditions of high flow and surface stor-
age volumes. Many aquifers are subject to with-
drawals exceeding recharge, and hence continued
withdrawals from them cannot be sustained.

1.3.2 Too Much Water

Damage due to flooding is a direct result of
floodplain development that is incompatible with
floods. This is a risk many take, and indeed on
average it may result in positive private net
benefits, especially when public agencies subsi-
dize these private risk takers who incur losses in
times of flooding. In many river basins of
developed regions, annual expected flood dam-
ages are increasing over time, in spite of
increased expenditures in flood damage reduc-
tion measures. This is in part due to increased
economic development taking place on river
flood plains, not only of increased frequencies
and magnitudes of floods.

The increased economic value of developments
on floodplains often justifies increased develop-
ment and increased expenditures on flood damage
reduction measures. Flood protection works
decrease the risks of flood damage, creating an
even larger incentive for increased economic
development. Then when a flood exceeding the
capacity of existing flood protection works occurs,
and it will, even more damage results. This cycle of
increasing flood damages and costs of protection is
a natural result of increasing values of flood plain
development. Just what is the appropriate level of
risk? It may depend, as Fig. 1.24 illustrates, on the
level of flood insurance or subsidy provided when
flooding occurs.

Flood damages will decrease only if there are
restrictions placed on floodplain development.

w
iy

EOI1217m

unacceptable risk level
without @ / with ©
insurance or subsidy

— expected return

—p flood ry

Fig. 1.24 The lowest risk of flooding on a floodplain
does not always mean the best risk, and what risk is
acceptable may depend on the amount of insurance or
subsidy provided when flood damage occurs

Analyses carried out during planning can help
identify the appropriate level of development and
flood damage protection works based on the
beneficial as well as adverse economic, envi-
ronmental, and ecological consequences of flood
plain development. People are increasingly rec-
ognizing the economic as well as environmental
and ecological benefits of allowing floodplains to
do what they were formed to do—store flood
waters when floods occur.

Industrial development and related port
development may result in the demand for deeper
and wider rivers to allow the operation of larger
draft cargo vessels in the river. River channel
improvement cannot be detached from functions
such as water supply and flood control. Widening
and deepening a river channel for shipping pur-
poses may also decrease flood water levels.

1.3.3 Too Polluted

Wastewater discharges by industry and house-
holds can have considerable detrimental effects
on water quality and hence on public and
ecosystem health. Planning and management
activities should pay attention to these possible
negative consequences of industrial development
and the intensive use and subsequent runoff of
pesticides and fertilizers in urban as well as in
agricultural areas.

Issues regarding the environment and water
quality include:
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e Upstream versus downstream conflicts on
meeting water quality standards,

e Threats from aquatic nuisance species,

e Threats from the chemical, physical, and
biological water quality of the watershed’s
aquatic resources,

e Quality standards for recycled water,

e Nonpoint source pollution discharges includ-
ing sediment from erosion, and

¢ Inadequate groundwater protection, compacts,
and concerned institutions.

We still know too little about the environ-
mental and health impacts of many of the
wastewater constituents found in river waters. As
more is learned about, for example, the harmful
effects of heavy metals and dioxins, pharma-
ceutical products, and micropollutants and
nanoparticles in our water supplies, water quality
standards, plans and management policies should
be adjusted accordingly. The occurrence of major
fish kills and algae blooms also point to the need
to manage water quality as well as quantity.

1.3.4 Too Expensive

Too many of the world’s population do not have
adequate water to meet all of their drinking and
sanitation needs. Much of this is not due to the
lack of technical options available to provide
water to meet those needs. Rather those options
are deemed to be too expensive. Doing so is
judged to be beyond the ability of those living in
poverty to pay and recover the costs of imple-
menting, maintaining, and operating the needed
infrastructure. Large national and international
aid grants devoted to reducing water stress—
demands for clean water exceeding usable sup-
plies—in stressed communities have not been
sustainable in the long run where recipients have
been unable to pay for the upkeep of whatever
water resource systems are developed and pro-
vided. If financial aid is to be provided, to be
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effective it has to address all the root causes of
such poverty, not only the need for clean water.

1.3.5 Ecosystem Too Degraded

Aquatic and riparian ecosystems may be subject
to a number of threats. The most important ones
include habitat loss due to river training and
reclamation of floodplains and wetlands for
urban and industrial development, poor water
quality due to discharges of pesticides, fertilizers
and wastewater effluents, and the infestation of
aquatic nuisance species.

Exotic aquatic nuisance species can be major
threats to the chemical, physical, and biological
water quality of a river’s aquatic resources and a
major interference with other uses. The destruc-
tion and/or loss of the biological integrity of
aquatic habitats caused by introduced exotic
species is considered by many ecologists to be
among the most important problems facing nat-
ural aquatic and terrestrial ecosystems. Biologi-
cal integrity of natural ecosystems is controlled
by habitat quality, water flows or discharges,
water quality, and biological interactions
including those involving exotic species.

Once exotic species are established, they are
usually difficult to manage and nearly impossible
to eliminate. This creates a costly burden for
current and future generations. The invasion in
North America of nonindigenous aquatic nui-
sance species such as the sea lamprey, zebra
mussel, purple loosestrife, European green crab,
and various aquatic plant species, for example,
has had pronounced economic and ecological
consequences for all who use or otherwise ben-
efit from aquatic ecosystems.

Environmental and ecological effectiveness as
well as economic efficiency should be a guiding
principle in evaluating alternative solutions to
problems caused by aquatic nuisance organisms.
Funds spent in prevention and early detection
and eradication of aquatic nuisance species may
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reduce the need to spend considerably more
funds on management and control once such
aquatic nuisance species are well established.

1.3.6 Other Planning
and Management Issues

1.3.6.1 Navigation

Dredging river beds is a common practice to
keep river channels open for larger draft cargo
ships. The use of jetties as a way to increase the
flow in the main channel and hence increase
bottom scour is a way to reduce the amount of
dredging that may be needed, but any modifica-
tion of the width and depth of a river channel can
impact its flood carrying capacity. It can also
alter the periodic flooding of the floodplain that
in turn can have ecological impacts.

1.3.6.2 River Bank Erosion

Bank erosion can be a serious problem where
towns are located close to morphologically active
(eroding) rivers. Predictions of changes in river
courses due to bank erosion and bank accretion
are important inputs to land use planning in river
valleys and the choice of locations for bridges,
buildings, and hydraulic structures.

1.3.6.3 Reservoir Related Issues
Degradation of the riverbeds upstream of reser-
voirs may increase the risks of flooding in those
areas. Reservoir construction inevitably results in
loss of land and forces the evacuation of resi-
dents due to impoundment. Reservoirs can be
ecological barriers for migrating fish species such
as salmon. The water quality in the reservoir may
deteriorate and the inflowing sediment may settle
and accumulate, reducing the active (useful)
water storage capacity of the reservoir and
causing more erosion downstream. Other poten-
tial problems may include those stemming from
stratification, water-related diseases, algae
growth, and abrasion of hydropower turbines.
Environmental and morphological impacts
downstream of the dam are often due to a
changed river hydrograph and decreased
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sediment load in the water released from the
reservoir. Lower sediment concentrations result
in higher risks of scouring of downstream riv-
erbeds and consequently a lowering of their
elevations. Economic as well as social impacts
include the risk of a dam break. Environmental
impacts may result from sedimentation control
measures (e.g., sediment flushing as shown in
Fig. 1.19) and reduced oxygen content of the
outflowing water.

1.4 System Planning Scales
1.4.1 Spatial Scales for Planning
and Management

Watersheds or river basins are usually considered
logical regions for water resources planning and
management. This makes sense if the impacts of
decisions regarding water resources management
are contained within the watershed or basin. How
land and water are managed in one part of a river
basin can impact the land and water in other parts
of the basin. For example, the discharge of pol-
lutants or the clearing of forests in the upstream
portion of the basin may degrade the quality and
increase the variability of the flows and sedi-
mentation downstream. The construction of a
dam or weir in the downstream part of a river
may block vessels and fish from traveling up- or
downstream through the dam site. To maximize
the economic and social benefits obtained from
the entire basin, and to insure that these benefits
and accompanying costs are equitably dis-
tributed, planning and management on a basin
scale is often undertaken.

While basin boundaries make sense from a
hydrologic point of view, they may be inade-
quate for addressing particular water resources
problems that are caused by events taking place
outside the basin. What is desired is the highest
level of performance, however defined, of the
entire physical, social-economic, and adminis-
trative water resource system. To the extent that
the applicable problems, stakeholders, and
administrative boundaries extend outside the
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river basin, then the physically based “river
basin” focus of planning and management should
be expanded to include the entire applicable
“problem-shed.” Hence consider the term “river
basin” used in this book to mean problem-shed
when appropriate.

1.4.2 Temporal Scales for Planning
and Management

Planning is a continuing iterative process. Water
resources plans need to be periodically updated
and adapt to new information, new objectives,
and updated forecasts of future demands, costs,
and benefits. Current decisions should not pre-
clude future generations from options they may
want to consider, but otherwise current decisions
should be responsive to current needs and
opportunities, and have the ability to be adapt-
able in the future to possible changes in those
needs and opportunities.

The number and duration of within-year time
periods explicitly considered in the planning
process will depend in part on the need to con-
sider the variability of the supplies of and
demands for water resources and on the purposes
to be served by the water resources. Irrigation
planning and summer season water recreation
planning may require a greater number of
within-year periods during the summer growing
and recreation season than might be the case if
one were considering only municipal water
supply planning, for example. Assessing the
impacts of alternatives for conjunctive surface
and groundwater management, or for water
quantity and quality management, require atten-
tion to processes that typically take place on
different spatial and temporal scales.

1.5 Planning and Management
Approaches

There are two general approaches to planning and
management. One is from the top-down, often
called command and control. The other is from the
bottom-up, often called the grassroots approach.
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Both approaches, working together, can lead to an
integrated plan and management policy.

1.5.1 Top-Down Planning

and Management

Over much of the past half-century water
resources professionals have been engaged in
preparing integrated, multipurpose “master”
development plans for many of the world’s river
basins. These plans typically consist of a series of
reports, complete with numerous appendices,
describing all aspects of water resources man-
agement and use. In these documents alternative
structural and nonstructural management options
are identified and evaluated. Based on these
evaluations, the preferred plan is recommended.

This master planning exercise has typically
been a top-down approach. Professionals have
dominated the top-down approach. Using this
approach there is typically little if any active
participation of interested stakeholders. The
approach assumes that one or more institutions
have the ability and authority to develop and
implement the plan, i.e., to oversee and manage
the coordinated development and operation of
the basin’s activities impacting the surface and
ground waters of the basin. In today’s environ-
ment where publics are calling for less govern-
ment oversight, regulation and control, and
increasing participation in planning and man-
agement activities, strictly top-down approaches
are becoming less desirable or acceptable.

1.5.2 Bottom-Up Planning
and Management

Within the past several decades water resources
planning and management processes have
increasingly involved the active participation of
interested stakeholders—those potentially affec-
ted by the decision being considered. Plans are
being created from the bottom-up rather
than top-down through a process of consensus
building. Concerned citizens, nongovernmen-
tal organizations, as well as professionals in
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governmental agencies are increasingly working
together toward the creation of adaptive com-
prehensive water management programs, poli-
cies, and plans.

Experiences trying to implement plans
developed primarily by professionals without
significant citizen involvement have shown that
even if such plans are technically sound they
have little chance of success if they do not take
into consideration the concerns and objectives of
affected stakeholders. To gain their support,
concerned stakeholders must be included in the
decision-making process as early as possible.
They must become part of the decision-making
process, not Inerely spectators, or even advisors,
to it. This will help gain their cooperation and
commitment to the plans eventually adopted.
Participating stakeholders will consider the
resulting plans as their plans as much as someone
else’s. They will have a sense of ownership, and
as such will strive to make them work. Such
adopted plans, if they are to be successfully
implemented, must fit within existing legislative,
permitting, enforcement, and monitoring pro-
grams. Stakeholder participation improves the
chance that the system being managed will be
sustainable.

Successful  planning and management
involves motivating all potential stakeholders
and sponsors to join and participate in the water
resources planning and management process. It
will involve building a consensus on goals and
objectives and on how to achieve them. Ideally
this should occur before addressing conflicting
issues so that all involved know each other and
are able to work together more -effectively.
Agreements on goals and objectives and on the
organization (or group formed from multiple
organizations) that will lead and coordinate the
water resources planning and management pro-
cess should be reached before stakeholders bring
their individual priorities or problems to the
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table. Once the inevitable conflicts become
identified, the settling of administrative matters
does not get any easier.

Bottom-up planning must strive to achieve a
common or ‘“shared” vision among all stake-
holders. It must either comply with all applicable
laws and regulations, or propose changes to
them. It should strive to identify and evaluate
multiple alternatives and performance criteria—
including sustainability criteria, and yet keep the
process from producing a wish list of everything
each stakeholder wants. In other words, it must
identify trade-offs among conflicting goals or
measures of performance, and prioritizing
appropriate strategies. It must value and com-
pare, somehow, the intangible and nonmonetary
impacts of environmental and ecosystem pro-
tection and restoration with other activities
whose benefits and costs can be expressed in
monetary units. In doing all this, planners should
use modern information technology, as available,
to improve both the process and product. This
technology, however, will not eliminate the need
to reach conclusions and make decisions on the
basis of incomplete and uncertain data and sci-
entific knowledge.

These process issues emphasize the need to
make water resources planning and management
as efficient and effective as possible and remain
participatory. Many issues will arise in terms of
evaluating alternatives and establishing perfor-
mance criteria (prioritizing issues and possible
actions), performing incremental cost analysis,
and valuing monetary and nonmonetary benefits.
Questions must be answered as to how much
data must be collected and with what precision,
and what types of modern information technol-
ogy (e.g., geographic information systems (GIS),
remote sensing, Internet and mobile Internet
networks, decision support systems, etc.) can be
beneficially used both for analyses as well as
communication.
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1.5.3 Integrated Water Resources

Management

The concept of integrated water resources man-
agement (IWRM) has been developing over the
past several decades. IWRM is the response to
the growing pressure on our water resources
systems caused by growing populations and
socioeconomic developments. Water shortages
and deteriorating water quality have forced many
countries in the world to reconsider their devel-
opment policies with respect to the management
of their water resources. As a result water
resources management (WRM) has been under-
going a change worldwide, moving from a
mainly  supply-oriented, engineering-biased
approach toward a demand-oriented, multisec-
toral approach, often labeled integrated water
resources management.

The concept of IWRM moves away from
top-down “water master planning” that usually
focuses on water availability and development, and
toward “comprehensive water policy planning”
that addresses the interaction between different
subsectors (Fig. 1.25), seeks to establish priorities,
considers institutional requirements, and deals with
the building of management capacity.

socio-
economic
system

natural

Fig. 1.25 Interactions among the natural, administrative,
and socioeconomic water resource subsectors and
between them and their environment

Box 1.1 Definition of IWRM

IWRM is a process which promotes the
coordinated development and management
of water, land, and related resources, in
order to maximize the resultant economic
and social welfare in an equitable manner
without compromising the sustainability of

vital ecosystems.
(GWP 2000)

IWRM (Box 1.1) considers the use of the
resources in relation to social and economic
activities and functions. These determine the
need for laws and regulations pertaining to the
sustainable and beneficial use of the water
resources. Infrastructure together with regulatory
measures allows more effective use of the
resource including meeting ecosystem needs.

1.5.4 Water Security
and the Sustainable
Development Goals
(SDGs)

While IWRM focuses on the process to improve
water management (the how), the term “water
security” focuses on the output (the what). The
World Economic Forum has identified Water
Security as one of the biggest global economic
development issues. Water Security is defined by
UN-Water (2013) as

the capacity of a population to safeguard sustain-
able access to adequate quantities of acceptable
quality water for sustaining livelihoods, human
well-being, and socio-economic development, for
ensuring protection against water-borne pollution
and water-related disasters, and for preserving
ecosystems in a climate of peace and political
stability.

Attempts are being made to identify the many
dimensions of water security and to quantify
them (van Beek and Arriens 2014; ADB 2016).
In 2015 the UN adopted the Sustainable Devel-
opment Goals 2015-2030 that specify specific
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targets for various goals such as the provision of
water for drinking and sanitation, water produc-
tivity in agriculture, industry and energy, envi-
ronment, and reduction of floods and droughts. It
is expected that many countries will expect their
water managers to use the SDGs as objectives in
water resources planning. This means that our
planning and management proposals need to be
able to quantify the impacts of possible plans and
policies in terms of the SDG targets.

1.5.5 Planning and Management
Aspects

1.5.5.1 Technical

Technical aspects of planning include hydrologic
assessments. Hydrologic assessments identify
and characterize the properties of, and interac-
tions among, the resources in the basin or region.
This includes the land, the rainfall, the runoff, the
stream and river flows, and the groundwater.

Existing watershed land use and land cover,
and future changes in this use and cover, result in
part from existing and future changes in regional
population and economy. Planning involves
predicting changes in land use/covers and eco-
nomic activities at watershed and river basin
levels. These will influence the amount of runoff,
and the concentrations of sediment and other
quality constituents (organic wastes, nutrients,
pesticides, etc.) in the runoff resulting from any
given pattern of rainfall over the land area. These
predictions will help planners estimate the
quantities and qualities of flows throughout a
watershed or basin, associated with any land use
and water management policy. This in turn pro-
vides the basis for predicting the type and health
of terrestrial and aquatic ecosystems in the basin.
All of this may impact the economic develop-
ment of the region, which is what, in part,
determines the future demands for changes in
land use and land cover.

Technical aspects also include the estimation
of the costs and benefits of any measures taken to
manage the basin’s water resources. These mea-
sures might include:
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e Engineering structures for making better use
of scarce water.

e Canals and water-lifting devices.

e Dams and storage reservoirs that can retain
excess water from periods of high flow for
use during the periods of low flow. By stor-
age of floodwater they may also reduce flood
damage below the reservoir.

e Open channels that may take the form of a
canal, flume, tunnel, or partly filled pipe.

e Pressure conduits.

e Diversion structures, ditches, pipes, checks,
flow dividers, and other engineering facilities
necessary for the effective operation of irri-
gation and drainage systems.

e Municipal and industrial water intakes,
including water purification plants and trans-
mission facilities.

e Sewerage and industrial wastewater treatment
plants, including waste collection and ulti-
mate disposal facilities.

e Hydroelectric power storage, run-of-river, or
pumped storage plants.

e River channel regulation works, bank stabi-
lization, navigation dams and barrages, navi-
gation locks, and other engineering facilities
for improving a river for navigation.

e Levees and floodwalls for confining flows
within predetermined channels.

Not only must the planning process identify
and evaluate alternative management strategies
involving structural and nonstructural measures
that will incur costs and bring benefits, but it
must also identify and evaluate alternative time
schedules for implementing those measures. The
planning of development over time involving
interdependent projects, uncertain future supplies
and demands as well as costs, benefits, and in-
terest (discount) rates is part of all water
resources planning and management processes.

With increasing emphasis placed on ecosystem
preservation and enhancement, planning must
include ecologic impact assessments. The mix of
soil types and depths and land covers together with
the hydrological quantity and quality flow and
storage regimes in rivers, lakes, wetlands, and
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aquifers all impact the riparian and aquatic ecol-
ogy of the basin. Water managers are being asked
to consider ways of improving or restoring
ecosystems by, for example, reducing the

e destruction and/or loss of the biological
integrity of aquatic habitats caused by intro-
duced exotic species or changes in flow and
sediment patterns due to upstream reservoir
operation.

e decline in number and extent of wetlands and
the adverse impacts to wetlands of proposed
land and water development projects.

e conflicts between the needs of people for
water supply, recreational, energy, flood
control, and navigation infrastructure and the
needs of ecological communities, including
endangered species.

And indeed there are and will continue to be
conflicts among alternative objectives and pur-
poses of water management. Planners and man-
agers must identify the trade-offs among
environmental, ecologic, economic, and social
impacts, however measured, and the management
alternatives that balance these often-conflicting
interests.

1.5.5.2 Financial and Economic

The overriding financial component of any plan-
ning process is to make sure that the recom-
mended plans and projects will be able to pay for
themselves. Revenues are needed to recover
construction costs, if any, and to maintain, repair,
and operate any infrastructure designed to man-
age the basin’s water resources. This may require
cost-recovery policies that involve pricing the
outputs of projects. Recognizing water as an
economic good does not always mean that full
costs should be charged. Poor people have the
right to safe water and how this is to be achieved
should be taken into account. Yet beneficiaries
should be expected to pay at least something for
the added benefits they get. Planning must iden-
tify equitable cost and risk-sharing policies and
improved approaches to risk/cost management.
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Financial viability is often viewed as a con-
straint that must be satisfied. It is not viewed as
an objective whose maximization could result in
a reduction in economic efficiency, equity, or
other nonmonetary objectives. In many devel-
oping countries a distinction is made between the
recovery of investment costs and the recovery of
O&M costs. Recovery of O&M costs is a mini-
mum condition for a sustainable project. Without
that, it is likely that the performance of the pro-
ject will deteriorate over time.

Many past failures in water resources man-
agement are attributable to the fact that water—its
quantity, reliability, quality, pressure, location—
has been and still is viewed as a free good. Prices
paid for irrigation and drinking water are in many
countries well below the full cost of the infras-
tructure and personnel needed to provide that
water, which comprises the capital charges
involved, the operation and maintenance (O&M)
costs, the opportunity cost, economic and envi-
ronmental externalities (see GWP 2000). Charg-
ing for water at less than full cost means that the
government, society, and/or environment “subsi-
dizes” water use and leads to an inefficient use of
the resource.

1.5.5.3 Institutional and Governance
The first condition for the successful implemen-
tation of plans and policies is to have an enabling
environment. There must exist national, provin-
cial, and local policies, legislation and institu-
tions that make it possible for the desired
decisions to be taken and implemented. The role
of the government is crucial. The reasons for
governmental involvement are manifold:

e Water is a resource beyond property rights: it
cannot be “owned” by private persons. Water
rights can be given to persons or companies,
but only the rights to use the water and not to
own it. Conflicts between users automatically
turn up at the table of the final owner of the
resource—the government.

e Water is a resource that often requires large
investments to develop, treat, store, distribute,
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and use, and then to collect, treat, and dispose
or reuse. Examples are multipurpose reser-
voirs and the construction of dykes along
coasts and rivers. The required investments
are large and typically can only be made by
governments or state-owned companies.

e Water is a medium that can easily transfer
external effects. The use of water by one
activity often has negative effects on other
water using activities (externalities). The
obvious example is the discharge of wastew-
ater into a river may save the discharger
money but it may have negative effects on
downstream users requiring cleaner water.

Only the government can address many of
these issues and hence “good governance” is
necessary for good water management. An
insufficient institutional setting and the lack of a
sound economic base are the main causes of
water resources development project failure, not
technical inadequacy of design and construction.
This is also the reason why at present much
attention is given to institutional developments
and governance in both developed and develop-
ing regions and countries.

In Europe, various types of water agencies are
operational (e.g., the Agence de I’Eau in France
and the water companies in England), each
having advantages and disadvantages. The Water
Framework Directive of the European Union
requires that water management be carried out at
the scale of a river basin, particularly when this
involves transboundary management. It is very
likely that this will result in a shift in responsi-
bilities of the institutions involved and the
establishment of new institutions. In other parts
of the world experiments are being carried out
with various types of river basin organizations,
combining local, regional, and sometimes
national governments.

1.5.5.4 Models for Impact Prediction
and Evaluation

Planning processes have undergone a significant

transformation over the past five decades, mainly

due to the continuing development of improved

computational technology. Planning today is
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heavily dependent on the use of computer-based
impact prediction models. Such models are used
to assist in the identification and evaluation of
alternative ways of meeting various planning and
management objectives. They provide an effi-
cient way of using spatial and temporal data in an
effort to predict the interaction and impacts, over
space and time, of various river basin compo-
nents under alternative designs and operating
policies.

Many of the systems analysis approaches and
models discussed in the following chapters of
this book have been, and continue to be, central
to the planning and management process. Their
usefulness is directly dependent on the quality of
the data and models being used. Models can
assist planning and management at different
levels of detail. Some models are used for pre-
liminary screening of alternative plans and poli-
cies, and as such do not require major data
collection efforts. Screening models can also be
used to estimate how significant certain data and
assumptions are to the decisions being consid-
ered, and hence can help guide additional data
collection activities. At the other end of the
planning and management spectrum, much more
detailed models can be used for engineering de-
sign. These more complex models are more data
demanding, and typically require higher levels of
expertise for their proper use.

The integration of modeling technology into
the social and political components of the plan-
ning and management processes in a way that
enhances those processes continues to be the
main challenge of those who develop planning
and management models. Efforts to build and
apply interactive generic modeling programs or
“shells” into which interested stakeholders can
“draw in” their system, enter their data and op-
erating rules at the level of detail desired, simu-
late it, and discover the effect of alternative
assumptions and operating rules, has in many
cases helped to create a common or shared
understanding among these stakeholders. Getting
stakeholders involved in developing and experi-
menting with their own interactive data-driven
models has been an effective way of building a
consensus—a shared vision.
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1.5.5.5 Models for Shared Vision
or Consensus Building

Participatory planning involves conflict man-
agement. Each stakeholder or interest group has
its objectives, interests, and agendas. Some of
these may be in conflict. The planning and
management process is one of negotiation and
compromise. This takes time but from it can
come decisions that have the best chance of
being considered the right decisions by most
participants. Models can assist in this process of
reaching a common understanding and agree-
ment among different stakeholders. This has a
greater chance of happening if the stakeholders
themselves are involved in the modeling process.

Involving stakeholders in collaborative model
building accomplishes a number of things. It
gives them a feeling of ownership. They will
have a much better understanding of just what
their model can do and what it cannot do. If they
are involved in model building, they will know
the assumptions built into their model.

Being involved in a modeling exercise is a
way to understand better the impacts of various
assumptions one must make when developing
and running models. While there may be no
agreement on the best of various assumptions to
make, stakeholders can learn which of those
assumptions matter and which do not. In addi-
tion, the involvement of stakeholders in the
process of model development will create dis-
cussions that will lead toward a better under-
standing of everyone’s interests and concerns.
Though such model building exercises, it is just
possible those involved will reach not only a
better understanding of everyone’s concerns, but
also a common or “shared” vision of at least how
their system (as represented by their model, of
course) works.

1.5.5.6 Models for Adaptive
Management

Recent emphasis has shifted from structural
engineering solutions to more nonstructural al-
ternatives, especially for environmental and
ecosystem restoration. Part of this shift reflects
the desire to keep more options open for future
generations. It reflects the desire to be adaptive to
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new information and to respond to surprises—
impacts not forecasted. As we learn more about
how river basins, estuaries, and coastal zones
work, and how humans can better manage those
resources, we do not want to regret what we have
done in the past that may preclude this
adaptation.

In some situations, it may be desirable to
create a “rolling” plan—one based on the results
of an optimization or simulation model of a
particular water resource system that can be
updated at any time. This permits responses to
resource management and regulatory questions
when they are asked, not just at times when new
planning and management exercises take place.
While this appears to be desirable, will planning
and management organizations have the financ-
ing and support to maintain and update the
modeling software used to estimate various
impacts, collect and analyze new data, and
maintain the expertise, all of which are necessary
for continuous planning (rolling plans)?

1.6 Planning and Management
Characteristics

1.6.1 Integrated Policies

and Development Plans

Clearly, a portion of any water resources plan-
ning and management study report should con-
tain a discussion of the particular site-specific
water resource management issues and options.
Another part of the report might include a pri-
oritized list of strategies for addressing existing
problems and available development or man-
agement opportunities in the basin.

Recent emphasis has shifted from structural
engineering solutions to more nonstructural al-
ternatives, especially for environmental and
ecosystem restoration. Part of this shift reflects
the desire to keep more options open for future
generations. It reflects the desire to be adaptive to
new information and to respond to surprises—
impacts not forecasted. As we learn more about
how river basins, estuaries, and coastal zones
work, and how humans can better manage their
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water resources, we do not want to be regretting
what we have done in the past that may preclude
this adaptation.

Consideration also needs to be given to
improving the quality of the water resources
planning and management review process and
focusing on outcomes themselves rather than
output measures. One of the outcomes should be
an increased understanding of some of the rela-
tionships between various human activities and
the hydrology and ecology of the basin, estuary,
or coastal zone. Models developed for predicting
the economic as well as ecologic interactions and
impacts due to changes in land and water man-
agement and use could be used to address
questions such as:

e What are the hydrologic, ecologic, and eco-
nomic consequences of clustering or dis-
persing human land uses such as urban and
commercial developments and large residen-
tial areas? Similarly, what are the conse-
quences of concentrated versus dispersed
patterns of reserve lands, stream buffers, and
forestland?

e What are the costs and ecological benefits of a
conservation strategy based on near-stream
measures (e.g., riparian buffers) versus
near-source (e.g., upland/site edge) measures?
What is the relative cost of forgone upland
development versus forgone valley or riparian
development? Do costs strongly limit the use
of stream buffer zones as mitigating for
agriculture, residential, and urban
developments?

e Should large intensive developments be best
located in upland or valley areas? Does the
answer differ depending on economic, envi-
ronmental, or aquatic ecosystem perspec-
tives? From the same perspectives, is the
most efficient and desirable landscape highly
fragmented or highly zoned with centers of
economic activity?

e To what extent can riparian conservation and
enhancement mitigate upland human land use
effects? How do the costs of upland controls
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compare with the costs of riparian mitigation
measures?

What are the economic and environmental
quality trade-offs associated with different
areas of different classes of land use such as
commercial/urban, residential, agriculture,
and forest?

Can adverse effects on hydrology, aquatic
ecology, and water quality of urban areas be
better mitigated with upstream or downstream
management approaches? Can land controls
like stream buffers be used at reasonable cost
within urban areas, and if so, how effective
are they?

Is there a threshold size for residential/
commercial areas that yield marked ecologi-
cal effects?

What are the ecological states at the land-
scape scale that once attained become irre-
versible with reasonable mitigation measures?
For example, once stream segments in an
urban setting become highly altered by direct
and indirect effects (e.g., channel bank pro-
tection and straightening and urban runoff),
can they be restored with feasible changes in
urban land use or mitigation measures?
Mitigating flood risk by minimizing flood-
plain developments coincides with conserva-
tion of aquatic life in streams. What are
the economic costs of this type of risk
avoidance?

What are the economic limitations and eco-
logic benefits of having light residential zones
between waterways and commercial, urban,
or agriculture lands?

What are the economic development deci-
sions that are irreversible on the landscape?
For example, once land is used for commer-
cial development, it is normally too costly to
return it to agricultural land. This would
identify limits on planning and management
for conservation and development.

What are the associated ecological and eco-
nomic impacts of the trend in residential,
commercial and forests lands replacing agri-
cultural lands?
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The answers to these and similar questions
may well differ in different regions. However, if
we can address them on a regional scale, i.e., in
multiple river basins, we just might begin to
understand and predict better the interactions
among economy, environment ecology, and
people as a function of how we manage and use
its land and water. This in turn may help us better
manage and use our land and water resources for
the betterment of all—now and on into the future.

1.6.2 Sustainability

Sustainable water resource systems are those
designed and managed to best serve people living
in the future as well as those of us living today.
The actions that we as a society take now to
satisfy our own needs and desires should not
only depend on what those actions will do for us
but also on how they will affect our descendants.
This consideration of the long-term impacts on
future generations of actions taken now is the
essence of sustainable development. While the
word “‘sustainability” can mean different things
to different people, it always includes a consid-
eration of the welfare of those living in the
future. While the debate over a more precise
definition of sustainability will continue, and
questions over just what it is that should be
sustained may remain unanswered, this should
not delay progress toward achieving water
resource systems that we judge best serves those
of us living today as well as our children and
their children living in the future.

The concept of environmental and ecological
sustainability has largely resulted from a growing
concern about the long-run health of our planet.
There is increasing evidence that our present
resource use and management activities and
actions, even at local levels, can significantly
affect the welfare of those living within much
larger regions in the future. Water resource
management problems at a river basin level are
rarely purely technical and of interest only to
those living within the individual river basins
where those problems exist. They are
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increasingly related to broader societal structures,
demands, and goals.

What would future generations like us to do
for them? We do not know, but we can guess. As
uncertain as these guesses will be, we should
take them into account as we act to satisfy our
own immediate needs, demands, and desires.
There may be trade-offs between what we wish
to do for ourselves in our current generation
versus what we think future generations might
wish us to do for them. These trade-offs, if any,
between what present and future generations
would like should be considered. Once identified,
or at least estimated, just what decisions to make
should be debated and decided in the political
arena. There is no scientific theory to help us
identify which trade-offs, if any, are optimal.

The inclusion of sustainability criteria along
with the more common economic, environmen-
tal, ecological, and social criteria used to evaluate
alternative water resources development and
management strategies may identify a need to
change how we commonly develop and use our
water resources. We need to consider the impacts
of change itself. Change over time is certain; just
what it will be is uncertain. These changes will
impact the physical, biological, and social
dimensions of water resource systems. An
essential aspect in the planning, design and
management of sustainable systems is the antic-
ipation of change. This includes change due to
geomorphologic processes, to aging of infras-
tructure, to shifts in demands or desires of a
changing society, and even due to increased
variability of water supplies, possibly because of
a changing climate. Change is an essential fea-
ture of sustainable water resources development
and management.

Sustainable water resource systems are those
designed and operated in ways that make them
more adaptive, robust, and resilient to an uncer-
tain and changing future. Sustainable water
resource systems must be capable of effectively
functioning under conditions of changing sup-
plies, management objectives, and demands.
Sustainable systems, like any others, may fail,
but when they fail they must be capable of
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recovering and operating properly without undue
costs.

In the face of certain changes, but with
uncertain impacts, an evolving and adaptive
strategy for water resources development, man-
agement, and use is a necessary condition of
sustainable development. Conversely, inflexibil-
ity in the face of new information and new ob-
jectives and new social and political
environments is an indication of reduced system
sustainability. Adaptive management is a process
of adjusting management actions and directions,
as appropriate, in light of new information on the
current and likely future condition of our total
environment and on our progress toward meeting
our goals and objectives. Water resources
development and management decisions can be
viewed as experiments, subject to modification—
but with goals clearly in mind. Adaptive man-
agement recognizes the limitations of current
knowledge and experience and that we learn by
experimenting. It helps us move toward meeting
our changing goals over time in the face of this
incomplete knowledge and uncertainty. It accepts
the fact that there is a continual need to review
and revise management approaches because of
the changing as well as uncertain nature of our
socioeconomic and natural environments.

Changing the social and institutional compo-
nents of water resource systems are often the
most challenging because they involve changing
the way individuals think and act. Any process
involving change will require that we change our
institutions—the rules under which we as a
society function. Individuals are primarily
responsible for, and adaptive to, changing polit-
ical and social situations. Sustainability requires
that public and private institutions also change
over time in ways that are responsive to the needs
of individuals and society.

Given the uncertainty of what future genera-
tions will want, and the economic, environmental,
and ecological problems they will face, a guiding
principle for the achievement of sustainable water
resource systems is to provide options that allow
future generations to alter such systems. One of
the best ways to do this is to interfere as little as
possible with the proper functioning of natural
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life cycles within river basins, estuaries, and
coastal zones. Throughout the water resource
system planning and management process, it is
important to identify all the beneficial and adverse
ecological, economic, environmental, and social
effects—especially the long-term effects—asso-
ciated with any proposed planning and manage-
ment project.

1.7 Meeting the Planning
and Management
Challenges—A Summary

Planning (the formulation of development and
management plans and policies) is an important
and often indispensable means to support and
improve operational management. Planning pro-
vides an opportunity to:

e assess the current state of the water resources
and the conflicts and priorities over their use,
formulate visions, set goals and targets, and
thus orient operational management,

e provide a framework for organizing policy
relevant research and public participation,

e increase the legitimacy, public acceptance of,
or even support for how the resources are to
be allocated or controlled, especially in times
of stress, and

e facilitate the interaction, discussion, and
coordination among managers and stake-
holders, and generate a common point of
reference—a management plan or policy.

Many of the concerns and issues being
addressed by water resources planners and
managers today are similar to those faced by
planners and managers in the past. But some are
different. Most of the new ones are the result of
two trends: (1) a growing concern for the sus-
tainability of natural ecosystems and (2) an
increased recognition for the need of the
bottom-up “grassroots” participatory approach to
planning, managing, and decision-making.

Today planners work for economic develop-
ment and prosperity as they did in the past,
keeping in mind environmental impacts and
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goals as they have done in the past, but now
recognizing ecological impacts and values as
well. Water resources management may still be
focused on controlling and mitigating the adverse
impacts of floods and droughts and water pollu-
tion, on producing hydropower, on developing
irrigation, on controlling erosion and sediment,
and on promoting navigation, but only as these
and similar activities are compatible with healthy
ecosystems. Natural ecosystems generally benefit
from the wvariability of natural hydrologic
regimes. Other users prefer less variability. Much
of our engineering infrastructure is operated so as
to reduce hydrologic variability. Today water
resource systems are increasing, required to
provide rather than reduce hydrologic (and
accompanying sediment load) variability.
Reservoir operators, for example, can modify
their water release policies to increase this vari-
ability. Farmers and land use developers must
minimize rather than encourage land-disturbing
activities. Floodplains may need to get wet
occasionally. Rivers and streams may need to
meander and fish species requiring habitats along
the full length of rivers to complete their life
cycles must have access to those habitats. Clearly
these ecological objectives, added to all the other
economic and environmental ones, can only
compound the conflicts and issues with respect to
land and water management and use.

So, how can we manage all this conflict and
uncertainty? We know that water resources
planning and management should be founded on
sound science, efficient public program adminis-
tration, and broad participation of stakeholders.
Yet obtaining each of these three conditions is a
difficult challenge. While the natural and social
sciences can help us predict the economic, envi-
ronmental, and ecological impacts of alternative
decisions, those predictions are never certain. In
addition, these sciences offer no help in deter-
mining the best decision to make in the face of
multiple conflicting goals held by multiple
stakeholders—goals that have changed, and no
doubt will continue to change. Water resources
planning and management and decision-making
are not as easy as “we professionals can tell you
what to do. All you need is the will to do it.” Very
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often it is not clear what should be done. Pro-
fessionals administering the science, often from
public agencies, nongovernmental organizations,
or even from universities, are merely among all
the stakeholders having an interest in and con-
tributing to the management of water.

Each governmental agency, consulting firm,
environmental interest group, and citizen typi-
cally has its own limitations, authorities, exper-
tise and conflicts with other people, agencies and
organizations, all tending to detract from
achieving a fully integrated approach to water
resources planning and management. But just
because of this, the participation and contribu-
tions of all these stakeholders are needed. They
must come together in a partnership if indeed an
integrated approach to water resources planning
and management is to be achieved and sustained.
All views must be heard, considered, and acted
upon by all involved in the water resources
planning and management process.

Water resources planning and management is
not simply the application and implementation of
science. It is creating a social environment that
gets all of us who should be involved, from the
beginning, in a continuing planning process. This
process is one of

e educating ourselves about how our systems
work and function,

e identifying existing or potential options and
opportunities for enhancement and resource
development and use,

e resolving the inevitable problems and con-
flicts that will result over who gets what and
when and who pays who for what and when,

e making and implementing decisions, and
finally of

e monitoring the impacts of those decisions.

This process is repeated as surprises or new
opportunities or new knowledge dictates.

Successful water resources planning and
management requires the active participation of
all community institutions involved in economic
development and resource management. How
can this begin at the local stakeholder level? How
does anyone get others interested in preventing
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problems before those problems are apparent, or
especially before “unacceptable” solutions are
offered to deal with them? And how do you deal
with the inevitable group or groups of stake-
holders who see it in their best interest not to
participate in the planning process, but to just
criticize it from the outside? Who is in a position
at the local level to provide that leadership and
needed financial support? In some regions, non-
governmental institutions have been instrumental
in initiating and coordinating this process at local
grassroot levels.

Water resources planning and management
processes should identify a vision that guides
development and operational activities in the
affected region. Planning and management pro-
cesses should

e recognize and address the goals and expec-
tations of the region’s stakeholders,

e identify and respond to the region’s
water-related problems,
e function effectively within the region’s

legal/institutional frameworks,

e accommodate both short- and long-term issues,

e generate a diverse menu of alternatives,

e integrate the biotic and abiotic parts of the
basin,

e take into account the allocation of water for

all needs, including those of natural systems,

be stakeholder-driven,

take a global perspective,

be flexible and adaptable,

drive regulatory processes, not be driven by them,

be the basis for policy making,

foster coordination among planning partners

and consistency among related plans,

be accommodating of multiple objectives,

e be a synthesizer, recognize and deal with
conflicts, and

e produce recommendations
implemented.

that can be

All too often integrated planning processes are
hampered by the separation of planning, manage-
ment and implementing authorities, turf-protection
attitudes, shortsighted focusing of efforts, lack of

objectivity on the part of planners, and inadequate
funding. These deficiencies need addressing if
integrated holistic planning and management is to
be more than just something to write about.

Effective water resources planning and man-
agement is a challenge today, and will be an
increasing challenge into the foreseeable future.
This book introduces some of the tools that are
being used to meet these challenges. We consider
it only a first step toward becoming an accom-
plished planner or manager.
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Exercises

1.1 How would you define “Integrated Water

Resources Management” and what distin-

guishes it from “Sustainable Water

Resources Management”?

Can you identify some common water

management issues that are found in many

parts of the world?

1.3 Comment on the common practice of gov-

ernments giving aid to those in drought or

flood areas without any incentives to alter

land use management practices in anticipa-

tion of the next drought or flood.

What tools and information are available for

developing integrated water resources plans

and management policies?

1.5 What structural and nonstructural measures

can be taken to address water resources

issues?

Find the following statistics:

e Percent of all freshwater resources
worldwide available for drinking;

1.2

1.4

1.6



Exercises

e Number of people who die each year
from diseases associated with unsafe
drinking water;

e Percent of total freshwater resources in
polar regions;

e Per capita annual withdrawal of cubic
meters of freshwater in various countries;

e Average world per capita annual with-
drawal of cubic meters of freshwater;

e Tons of pollutants entering lakes and
rivers daily in various regions;

e Average number of gallons of water
consumed by humans in a lifetime;

e Average number of kilometers per day a
woman in a developing country must
walk to fetch fresh water.

Identify and briefly describe the six greatest

rivers in the world.

Identify some of the major water resource

management issues in the region where you

live. What management alternatives might
effectively reduce some of the problems or

1.7

1.8.

Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.
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provide additional economic, environmen-
tal, or social benefits.
Describe some water resource systems con-
sisting of various interdependent natural,
physical, and social components. What are
the inputs to the systems and what are their
outputs? How did you decide what to include
in the system and what not to include?
Sustainability is a concept applied to
renewable resource management. In your
words define what that means and how it
can be used in a changing and uncertain
environment both with respect to water
supplies and demands. Over what space and
timescales is it applicable, and how can one
decide whether or not some plan or man-
agement policy will be sustainable? How
does this concept relate to the adaptive
management concept?
. Identify and discuss briefly some of the
major issues and challenges facing water
managers today.

1.9.

1.10.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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Planning, designing, and managing water
resource systems today inevitably involve impact
prediction. Impact prediction can be aided by the
use of models. While acknowledging the
increasingly important role of modeling in water
resource planning and management, we also
acknowledge the inherent limitation of models as
representations of any real system. Model struc-
ture, input data, objectives, and other assumptions
related to how the real system functions or will
behave under alternative infrastructure designs
and management policies or practices may be
controversial or uncertain. Future events are
always unknown and of course any assumptions
about them may affect model outputs, i.e., their
predictions. As useful as they may be, the results
of any quantitative analysis are always only a part
of the information that should be considered by
those involved in the overall planning and man-
agement decision-making process.

2.1 Introduction

Modeling provides a way, perhaps the principal
way, of predicting the behavior or performance of
proposed system infrastructure designs or man-
agement policies. The past 50 years have wit-
nessed major advances in our abilities to model
the engineering, economic, ecologic, hydrologic,
and sometimes even the institutional or political
aspects of large complex multipurpose water
resource systems. Applications of models to real

© The Author(s) 2017

systems have improved our understanding of
such systems, and hence have often contributed to
improved system design, management, and
operation. They have also taught us how limited
our modeling skills remain.

When design and management decisions are
made, they are based on what the decision-
makers assume will take place as a result of their
decisions. These predictions are based on quali-
tative information and beliefs in peoples’ heads,
as illustrated in Fig. 2.1, possibly informed by
quantitative information provided by mathemat-
ical or computer-based models as illustrated in
Fig. 2.2. Computer-based modeling is used to
enhance mental models. These quantitative
mathematical models are often considered
essential for carrying out environmental impact
assessments. Mathematical simulation and opti-
mization models packaged within interactive
computer programs provide a common way for
planners and managers to predict the behavior of
any proposed water resources system design or
management policy before it is implemented.

Water resource systems are typically far more
complex than what analysts can model and
simulate. The reason is not primarily due to
computational limitations but rather it is because
we do not understand sufficiently the multiple
interdependent physical, biochemical, ecological,
social, legal, and political (human) processes that
govern the behavior of such water resource sys-
tems. People and their institutions impact the
performance of such systems, and the
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Fig. 2.1 Using mental models for prediction

performance of these systems impacts people.
System performance is affected by uncertainties
in things we can measure and processes we can
predict. They are also affected by the unpre-
dictable actions of individuals and institutions as
they manage and use water in response to a
multitude of impacts they experience in their
physical and social environment. Some of these
impacts are water related. Others have nothing
directly to do with water.

The development and application of models,
i.e., the art, science, and practice of modeling, as
will be discussed in the following chapters,
should be preceded by a recognition of what can
and cannot be achieved from the use of models.
Models of real-world systems are always sim-
plified representations of those systems. What
features of the actual system are represented in a

model, and what features are not, will depend in
part on what the modeler thinks is important with
respect to the issues being discussed or the
questions being asked. How well this is done will
depend on the skill of the modeler, the time and
money available, and, perhaps most importantly,
the modeler’s understanding of the real system
and decision-making process.

Developing models is an art. It requires
knowledge of the system being modeled, the
client’s objectives, goals, and information needs,
and some analytical and programming skills.
Models are always based on numerous assump-
tions or approximations, and some of these may
be at issue. Applying these approximations of
reality in ways that improve understandings and
eventually lead to a good decision clearly
requires not only modeling skills but also the
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ability to communicate and effectively work with
stakeholders and decision-makers.

Models produce information. They do not
make decisions or replace those individuals that
do. But they can inform them. Water resource
planners and managers must accept the fact that
decisions may not be influenced by the results of
their planning and management models. If model
results are not available when needed, they are
likely to be ignored when they become available.
If model results do not support the preferences of
decision-makers, they may also not be consid-
ered. To know, for example, that cloud seeding
may, on average, reduce the strength of hurri-
canes over a large region does not mean that such
cloud-seeding activities will or should be
undertaken. And it is unlikely everyone, even
so-called experts, will agree on any recom-
mended course of action. Managers or operators
may know that not everyone may benefit from
what they would like to do, and those who lose
will likely scream louder than those who gain.

In addition, decision-makers may feel safer in
inaction than action (Shapiro 1990; Simon 1998).
There is a strong feeling in many cultures and
legal systems that fail to act (nonfeasance) is
considered more acceptable than acts that fail
(misfeasance or malfeasance). We all feel greater
responsibility for what we do than for what we
do not do. Yet our aversion to risks of failure
should not deter us from addressing sensitive
planning or policy issues in our models.
Modeling efforts should be driven by the need for
information and improved understanding. It is
that improved understanding (not improved
models per se) that may eventually lead to
improved system design, management, and/or
operation. Models used to aid water resource
planners and managers are not intended to be,
and rarely are (if ever), a replacement of their
judgment. This we have learned, if nothing else,
in our over 50 years of modeling experience.

This brief chapter serves to introduce this art of
modeling and its applications. The emphasis
throughout this book is on application. This
chapter is about modeling in practice more than in
theory. It is based on the considerable experience
and literature pertaining to how well, or how
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poorly, professional practitioners and researchers
have done over the past five decades or more in
applying various modeling approaches or tools to
real problems with real clients (also see, for
example, Austin 1986; Brown et al. 2015; Cai
et al. 2013; Castelletti and Soncini-Sessa 2007;
Gass 1990; Kindler 1987, 1988; Loucks et al.
1985; Reynolds 1987; Rogers and Fiering 1986;
Russell and Baumann 2009; Watkins 2013).

In attempting to understand how modeling
can better support planners and managers, it may
be useful to examine just what planners and
managers of complex water resource systems do.
What planners or managers do governs to some
extent what they need to know. And what they
need to know governs to a large extent what
modelers or analysts should be trying to provide.
In this book the terms analysts or modelers,
planners, and managers can be the same person
or group of individuals. These terms are used to
distinguish the activities of individuals, not nec-
essarily the individuals themselves.

First, we offer some general thoughts on the
major challenges facing water resource systems
planners and managers, the information they
need to meet these challenges, and the role ana-
lysts have in helping to provide this information.
Next, we review some criteria for evaluating the
success of any modeling activity designed to help
planners or managers solve real problems.
Finally, we argue why we think the practice of
modeling is in a continual state of transition, and
how current research and development in mod-
eling as well as improvements in computing
technology are affecting that transition.

2.2 Modeling Water Resource
Systems

As will be discussed in greater detail in the fol-
lowing chapters of this book, there are many
types of models and modeling approaches that
have been developed and used to identify, study,
and evaluate alternative water resource designs,
management plans, and operating policies. But
before outlining these model types and modeling
approaches and how they can be used to best
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Fig. 2.2 Using
computer-based
mathematical models for
prediction

meet the needs of planners and managers, it may
be useful to describe a specific modeling exam-
ple based on Borsuk et al. (2001). In this
example, a sequence of models are used to assess
how effective reductions in upstream nutrient
runoff may be in improving the habitat for fish
and shellfish in a downstream estuary.

This example is followed by a discussion of
the conditions needed that motivate the use of
models, whether solely mental (Fig. 2.1) or both
mental and mathematical (Fig. 2.2).

2.2.1 An Example Modeling

Approach

Consider for example the sequence or chain of
models illustrated in Fig. 2.3 required for the
prediction of fish and shellfish survival as a
function of nutrient loadings into an estuary. The
condition of the fish and shellfish are important
to the economy of the region and the income of
many stakeholders. One way to maintain healthy

stocks is to maintain sufficient levels of oxygen
in the estuary. The way to do this is to control
algae blooms. This in turn requires limiting the
nutrient loadings to the estuary that can cause
algae blooms and subsequent dissolved oxygen
deficits. The modeling challenge is to link
nutrient loading to fish and shellfish survival. In
other words, can some quantitative relationship
be defined relating the amount of nutrient loading
to the amount of fish and shellfish survival?

The negative effects of excessive nutrients
(e.g., nitrogen) in an estuary are shown in
Fig. 2.3. Nutrients stimulate the growth of algae.
Algae die and accumulate on the bottom where
bacteria consume them. Under calm wind con-
ditions density stratification occurs. Oxygen is
depleted in the bottom water. As a consequence,
fish and shellfish may die or become weakened
and more vulnerable to disease.

A sequence of models, each providing input
data to the next model, can be defined to predict
shellfish and fish abundance in the estuary based
on upstream nutrient loadings. These models, for
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Fig. 2.3 The impacts of excessive nutrients in an estuary

each link shown in Fig. 2.4, can be a mix of
judgmental, mechanistic, and/or statistical ones.
Statistical models could range from simple
regressions to complex artificial neural networks.
Any type of model selected will have its
advantages and its limitations. Its appropriateness
may largely depend on the amount and precision
of the data available for model calibration and
verification.

The results of any modeling exercise should
be expressed in terms meaningful and of interest
to those that will be making decisions taking into
account those results. In this example ‘shell-fish
abundance’ and ‘number of fish-kills’ are mean-
ingful indicators to stakeholders and can be
related to designated water body use.

2.2.2 Characteristics of Problems
to be Modeled

Problems motivating modeling and analyses
exhibit a number of common -characteristics.
These are reviewed here because they provide
insight into whether a modeling study of a par-
ticular problem may be worthwhile. If the plan-
ners’ objectives are very unclear, if few
alternative courses of action exist, or if there is
little scientific understanding of the issues
involved, then mathematical modeling and other
more sophisticated methodologies are likely to
be of little use.

Successful applications of modeling are often
characterized by:
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Fig. 2.4 Cause and effect diagram for estuary eutrophication due to excessive nutrient loadings (after Borsuk et al.

2001)

e A systems focus or orientation. In such situ-
ations attention needs to be devoted to the
interdependencies and interactions of ele-
ments or components within the system as a
whole, as well as to the elements or compo-
nents themselves.

e The use of interdisciplinary teams. In many
complex and nontraditional problems, it is not
at all clear from the start what mix of disci-
plinary viewpoints will turn out to be most
appropriate or acceptable. It is essential that
participants in such work—coming from
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different established disciplines—become
familiar with the techniques, vocabulary, and
concepts of the other disciplines involved.
Participation in interdisciplinary modeling
often requires a willingness to make mistakes
at the fringes of one’s technical competence
and to accept less than the latest advances in
one’s own discipline.

o The use of formal mathematics. Most analysts
prefer to use mathematical models to assist in
system description and the identification and
evaluation of efficient tradeoffs among
conflicting objectives, and to provide an
unambiguous record of the assumptions and
data used in the analysis.

Not all water resources planning and man-
agement problems are suitable candidates for
study using modeling methods. Modeling is most
likely to be appropriate when:

e The planning and management objectives are
reasonably well defined, and organizations
and individuals can be identified who can
benefit from obtaining and understanding the
model results.

e There are many alternative decisions that may
satisfy the stated objectives, and the best
decision is not obvious.

e The water resources system and the objectives
being analyzed are describable by reasonably
tractable mathematical representations.

e The information needed, such as the hydro-
logical, economic, environmental, and eco-
logical impacts resulting from any decision,
can be better estimated through the use of
models.

e The values of the model parameters are
estimable from readily obtainable data.

2.3 Challenges Involving Modeling

Modeling activities present challenges to those
who do it as well as those who sponsor it and
may potentially benefit from model results.
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2.3.1 Challenges of Planners
and Managers

Planners and managers of water resource systems
are responsible for solving particular
water-related problems or meeting special water
resource needs. When they fail, they hear about
it. The public lets them know. (Example: the lead
contamination in the drinking water of Flint,
Michigan USA, after a switch in the water source
to reduce costs.) What makes their job particu-
larly challenging is that stakeholders often have
different needs and expectations. Furthermore,
institutions where water resource planners and
managers work (or hire consultants to work for
them) are like most institutions these days. They
must do what they have been asked to do with
limited financial and human resources. Their
clients include all of us who use water, or at least
all of us who are impacted by the decisions they
make.

The overall objective of planners, managers,
and operators and their institutions is to provide a
service, such as reliable and inexpensive supplies
of water, assurance of water quality, production
of hydropower, protection from floods, provision
of commercial navigation and recreational
opportunities, preservation of wildlife and
enhancement of ecosystems, or some combina-
tion of these or other purposes. Furthermore they
are expected to do this at a cost no greater than
what people are willing to pay. Meeting these
goals, i.e., keeping everyone happy, is not always
easy, or even possible.

Simple technical measures or procedures are
rarely available that will ensure a successful
solution to any particular set of water resource
management problems. Furthermore, everyone
who has had any exposure to water resources
planning and management knows one cannot
design or operate a water resource system with-
out making compromises. These compromises
often involve competing purposes (such as
hydropower and flood control) or competing
objectives (such as who benefits and who pays,
and how much and where and when). After
analysts, using their models of course, identify
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possible ways of achieving various goals and
objectives and provide estimates of associated
economical, environmental, ecological, and
social impacts, it is the decision-makers who
have the more difficult job. They must work with
and influence everyone who will be affected by
any decision.

Planning and managing involves not only
decision-making, but also developing among all
interested and influential individuals an under-
standing and consensus that legitimizes the
decisions and enhances their successful imple-
mentation. Planning and managing are processes
that take place in a social or political environ-
ment. These processes involve leadership and
communication among people and institutions.
Leadership and communication skills are learned
from experience working with people, not sitting
alone working with computers or models.

Moving an organization or institution into action
to achieve specific goals involves a number of
activities, including goal-setting, debating, coordi-
nating, motivating, deciding, implementing, and
monitoring. Many of these must be done simulta-
neously and continuously, especially as conditions
(goals and objectives, water supplies, water
demands, financial budgets) change over time.
These activities create a number of challenges that
are relevant to modelers or analysts. Some include:
1. identifying creative

problems.

2. finding out what each interest group wants to
know in order to reach an understanding of
the issues and a consensus on what to do.

3. developing and using models and presenting
their results so that everyone can reach a
common or shared understanding and agree-
ment that is consistent with their individual
values.

4. making decisions and implementing them
given differences in opinions, social values,
and objectives.

ways of solving

In addressing these needs or challenges,
planners, and managers must consider the
relevant

e legal rules and regulations;

e history of previous decisions;

e preferences of important actors and interest
groups;

e probable reactions of those affected by any
decision;

e relative importance of various issues being
addressed; and finally;

e sciences, engineering, and economics—the
technical aspects of their work.

We mention these technical aspects last not to
suggest that they are the least important factor to
be considered. We do this to emphasize that they
are only among many factors and, probably in
the eyes of planners and managers, not the most
decisive or influential (Ahearne 1988; Carey
1988; Pool 1990; Thissen and Walker 2013;
Walker 1987).

So, does the scientific, technical, systematic
approach to modeling for planning and man-
agement really matter? We believe it can if it
addresses the issues of concern to their clients,
the planners, and managers. Analysts need to be
prepared to interact with the political or social
structure of the institutions they are attempting to
assist, as well as with the public and the press.
Analysts should also be prepared to have their
work ignored. Even if analysts are presenting
‘facts’ based on the current state of the sciences,
sometimes these sciences are not considered
relevant. Happily for scientists and engineers,
this is not always the case. The challenge of
modelers or analysts interested in having an
impact on the performance of water resource
systems is to become a part of the largely polit-
ical planning and management process and to
contribute towards its improvement.

2.3.2 Challenges of Modelers

To engage in a successful water resource systems
study, the modeler must possess not only the
requisite  mathematical and systems modeling
skills, but also an understanding of the environ-
mental engineering, economic, political, cultural,
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and social aspects of water resources planning
problems. Consider, for example, the study of a
large land development plan. The planner should
be able to predict how the proposed development
would affect the quantity and quality of the surface
and subsurface runoff and how this will impact the
quantity and quality of surface waters and ground
waters and their ecosystems. These impacts, in
turn, might affect the planned development itself,
or others downstream. To do this the analysts must
have an understanding of the biological, chemical,
and physical and even social processes that are
involved in water resources management.

A reasonable knowledge of economic theory,
law, regional planning, and political science can
be just as important as an understanding of
hydraulic, hydrogeologic, hydrologic, ecologic,
and environmental engineering disciplines. It is
obvious that the results of most water resources
management decisions have a direct impact on
people and their relationships. Hence, inputs
from those having knowledge of these disciplines
are useful during the comprehensive planning of
water resource systems.

Some of the early water resource systems
studies were often undertaken with a naive view
of the appropriate role and impact of models and
modelers in the policymaking process. Policy-
makers could foresee the need to make a deci-
sion. They would ask the systems group to study
the problem. These analysts would then model
the problem, identify feasible solutions and their
consequences, and recommend one or at most a
few alternative solutions. The policymakers, after
waiting patiently for these recommendations,
would then make a yes or no decision. Experi-
ence to date suggests the following:

1. A final solution to a water resources planning
problem rarely exists; plans and policies are
dynamic. They evolve over time as facilities
are added and modified to adapt to changes in
management objectives and in the demands
placed on the facilities.

2. For every major decision there are many
minor decisions, made by different agencies
or management organizations responsible for
different aspects of a system.
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3. The times normally available to study par-
ticular water resources problems are shorter
than the times needed to do a thorough study,
or if there is sufficient time, the objectives of
the original study will likely have signifi-
cantly shifted by the time the study is
completed.

This experience emphasizes some of the lim-
itations and difficulties that any water resource
systems study may encounter, but more impor-
tantly, it underscores the need for constant
communication among the analysts, system
planners, managers and operators, and policy-
makers. The success or failure of many past
water resource studies is due largely to the efforts
expended or not expended in ensuring adequate,
timely and meaningful communication—com-
munication among systems analysts, planners,
those responsible for system operation and de-
sign, and public officials responsible for major
decisions and  setting general policies.
Decision-makers, who can benefit from the
information that can be derived from various
models and analyses, need it at particular times
and in a form useful and meaningful to them.
Once their window of opportunity for
decision-making has passed, such information,
no matter how well presented, is often useless.

At the beginning of any study, objectives are
usually poorly defined. As more is learned about
what can be achieved, stakeholders are better
able to identify what they want to achieve. Close
communication among analysts and all interested
stakeholders and decision-makers throughout the
modeling process is essential if systems studies
are to make their greatest contribution to the
planning process. Objectives as stated at the
beginning of a study often differ from the ob-
jectives as understood at the end of a study.

Furthermore, it is helpful if those who will use
models, and present the information derived from
models to those responsible for making deci-
sions, are intimately involved with model de-
velopment, solution, and analysis. Only then can
they appreciate the assumptions upon which any
particular model output is based, and hence
adequately evaluate the reliability of the results.
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Any water resource systems study that involves
only outside consultants, and minimal commu-
nication between consultants and planners within
a responsible management agency or involved
stakeholders, is not likely to have a significant
impact on the planning process. Models that are
useful tend to be those that are constantly being
modified and applied by those involved in plan
preparation, evaluation, and implementation.

2.3.3 Challenges of Applying Models
in Practice

The clients of modelers or analysts are typically
those who have problems to solve and who could
benefit from a better understanding of what
options they have and what impacts may result.
They want advice on what to do and why, what
will happen given what they do, and who will care
and how much. The aim of analysts is to provide
them with meaningful (understandable), useful,
accurate, and timely information. This informa-
tion is to help them better understand their system,
its problems, and alternative ways to address
them. In short, the purpose of water resource
systems planning and management modeling is to
provide useful and timely information to those
involved in managing such systems.

Modeling is a process or procedure intended
to focus and force clearer thinking and to pro-
mote better decision-making. The approach
involves problem recognition, system definition,
and bounding; identification of various goals or
objectives; identification and evaluation of vari-
ous alternatives; and very importantly, effective
communication of this information to those who
can benefit from it.

The focus of most books and articles on water
resource systems modeling is on modeling
methods. This book is no different. But what all
of us should also be interested in, and discuss
more than we do, is the use of these tools in the
processes of planning and management. If we
did, we could learn much from each other about

what tools are needed and how they can be better
applied in practice. We could extend the thoughts
of those who, in a more general way, addressed
these issues over four decades ago (Majoni and
Quade 1980; Tomlison 1980; Miser 1980; Sto-
key and Zeckhauser 1977).

There is always a gap between what
researchers in water resource systems modeling
produce and publish, and what the practitioner
finds useful and uses. Those involved in research
are naturally interested in developing new and
improved tools and methods for studying, iden-
tifying, and evaluating alternative water resource
system designs and management and operation
policies. If there were no gap between what is
being developed or advocated by researchers and
that which is actually used by practitioners, either
the research community would be very ineffec-
tive in developing new technology or the prac-
titioners would be incredibly skilled in reading,
assimilating, evaluating, and adapting what is
worth adapting from this research to meet their
needs. Evaluation, testing, and inevitable modi-
fications take time. Not all published research is
ready or suited for implementation. By definition
research is a work in progress.

How can modelers help reduce the time it
takes for new ideas and approaches to be adopted
and used in practice? Clearly, practitioners are
not likely to accept a new modeling approach or
even modeling itself unless it is obvious that it
will improve the performance of their work as
well as help them address problems they are
trying to solve. Will some new model or com-
puter program make it easier for practitioners to
carry out their responsibilities? If it will, there is
a good chance that the model or computer pro-
gram might be successfully used, eventually.
Successful use of the information derived from
models or programs is, after all, the ultimate test
of the value of those models or programs. Peer
review and publication is only one, and perhaps
not even a necessary, step towards that ultimate
test or measure of value of a particular model or
modeling approach.
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2.3.4 Evaluating Modeling Success

There are a number of ways one can judge suc-
cess (or failure) in applying models in practice.
Goeller (1988) suggested three measures as a
basis for judging success:

1. How the analysis was performed and pre-
sented (analysis success);

2. How it was used or implemented in the
planning and management processes (appli-
cation success); and

3. How the information derived from the model
and its application affected the system design
or operation and the lives of those who used
the system (outcome success).

The extent to which the models and methods
and style of presentation are appropriate for the
problem being addressed, the resources and time
available for the study, and the institutional
environment of the client, are often hard to judge.
Publishing in peer-review journals and review
panels are two ways of judging. No model or
method is without its limitations. Two other
obvious indications are the feeling analysts have
about their own work and, very importantly, the
feeling the clients have about the analysts’ work.
Client satisfaction may not be an appropriate
indicator if, for example, they are unhappy only
because they are learning something they do not
want to accept. Producing results primarily to
reinforce a client’s prior position or opinions
might result in client satisfaction but, most would
agree, this is not an appropriate goal of modeling.

Application or implementation success
implies that the methods and/or results developed
in the study were seriously considered by those
involved in the planning and management pro-
cess. One should not, it seems to us, judge suc-
cess or failure based on whether or not any of the
model results, i.e., the computer ‘printout,” were
directly implemented. What one hopes for is that
the information and understanding resulting from
model application helped define and focus the
problem and possible solutions, and helped
influence the debate among stakeholders and
decision-makers about what decisions to make or
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actions to take. The extent to which this occurs is
the extent to which a modeling study will have
achieved application or implementation success.

Outcome success is based on what happened
to the problem situation once a decision (that was
largely influenced by the results of modeling)
was made and implemented. The extent to which
the information and understanding resulting from
modeling helped solve the problems or resolve
the issues, if it can be determined, is a measure of
the extent of outcome success.

It is clear that success based on any of the last
two of the three criteria will be strongly depen-
dent on the success of the preceding criteria.
Modeling applications may be judged successful
based on the first two measures, but perhaps
because of unpredicted events, the problems
being addressed have become worse rather than
improved, or while those particular problems
were eliminated, their elimination caused one or
more even more severe problems. All of us can
think of examples where this has happened. The
previously mentioned lead contamination in the
drinking water of Flint, Michigan, resulting from
trying to reduce costs is one example. Any river
restoration project involving the removal of
engineering infrastructure is another example of
changing objectives or new knowledge following
previous decisions that no longer work very well.
Who knows—a broader systems study might
have helped planners, managers, and decision-
makers foresee such consequences, but one
cannot count on that. Hindsight is always clearer
than foresight. Much of what takes place in the
world is completely unpredictable. Given this, it
is not clear whether we should hold modelers or
analysts, or even planners or managers, com-
pletely responsible for any lack of ‘outcome
success’ if unforeseen events change society’s
goals, priorities, and understanding.

Problem situations and criteria for judging the
extent of success are likely to change over time.
By the time one can evaluate outcome success,
the system itself may have changed enough for
the outcome to be quite different than what was
predicted in the analysis. Monitoring the perfor-
mance of any decision, whether or not based on a
successfully  analyzed and implemented
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modeling effort, is often neglected. But moni-
toring is very important if changes in system
design, management, and operation are to be
made to adapt to changing and unforeseen
conditions.

If the models, data, computer programs, doc-
umentation, and know-how are successfully
maintained, updated, and transferred to and used
by the client institutions, there is a good chance
that this methodology will be able to provide
useful information relevant to the changes that are
needed in system design, management, or oper-
ation. Until relatively recently, the successful
transfer of models and their supporting technol-
ogy have involved a considerable commitment of
time and money for both the analysts as well as
the potential users of the tools and techniques. It
has been a slow process. Developments in inter-
active computer-based decision support systems
that provide a more easily understood human—
model-data—computer interface have substan-
tially facilitated this technology transfer process.
These interactive interface developments have
had a major impact on the state of the practice in
using models in the processes of water resources
planning and management.

2.4 Developments in Modeling

2.4.1 Technology

The increasing developments in computer tech-
nology—from mobile devices to microcomputers
and workstations to supercomputers—and all
their software applications—have motivated the
concurrent development of an impressive set of
new models and accompanying software. This
software is aimed at facilitating model use and,
more importantly, interaction and communica-
tion between the analysts or modelers and their
clients. This new software includes

1. Interactive approaches to model operation
that put users more in control of their com-
puters, models, and data;

2. Computer graphics that facilitate data input,
editing, display, and comprehension;

3. Geographic information systems that provide
improved spatial analysis and display
capabilities;

4. Expert systems that can help the user under-
stand better how complex decision problems
might be solved and at the same time explain
to the users why one particular decision may
be better than another;

5. Cloud computing, electronic mail, and the
Internet that lets analysts, planners, and
managers communicate and share data and
information with others worldwide, and to
run models that are located and maintained at
distant sites;

6. Multimedia systems that permit the use of
sound and video animation in analyses, all
aimed at improved communication and
understanding.

These and other software developments are
giving planners and managers improved oppor-
tunities for increasing their understanding of their
water resource systems. Such developments in
technology should continue to aid all of us in
converting model output data to information, i.e.,
it should provide us with a clearer knowledge
and understanding of the alternatives, issues, and
impacts associated with potential solutions to
water resource systems problems. But once
again, this improved information and under-
standing will only be a part of what planners and
managers must consider.

Will all the potential benefits of new technol-
ogy actually occur? Will analysts be able to
develop and apply these continual improvements
in new technology wisely? Will we avoid another
case of oversell or unfulfilled promises? Will we
avoid the temptation of generating fancy ani-
mated, full-color computer displays just because
we are easily able to, rather than being motivated
by the hope that such methods will add to
improved understanding of how to solve problems
more effectively? Will we provide the safeguards
needed to ensure the proper use and interpretation
of the information derived from increasingly
user-friendly computer programs? Will we keep a
problem-solving focus, and continue to work
towards increasing our understanding of how to
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improve the development and management of our
water resources whether or not our planning
models are incorporated into some sort of inter-
active computer-aided support system? We can,
but it will take discipline.

As modelers or researchers, we must discipline
ourselves to work more closely with our clients—
the planners, managers, and other specialists who
are responsible for the development and operation
of our water resource systems. We must study
their systems and their problems, and we must
identify their information needs. We must
develop better tools that they themselves can use
to model their water resource systems and obtain
an improved understanding—a shared vision—of
how their system functions and of their available
management options and associated impacts or
consequences. We must be willing to be multi-
disciplinary and capable of including all relevant
data in our analyses. We must appreciate and see
the perspectives of the agronomists, ecologists,
economists, engineers, hydrologists, lawyers, or
political and regional scientists—you name it—as
appropriate. Viewing a water resource system
from a single-discipline perspective is rarely
sufficient to meet today’s water resource systems
planning challenges.

Even if we have successfully incorporated all
relevant disciplines and data in our analyses, we
should have a healthy skepticism about our
resulting information. We must admit that this
information, especially concerning what might
happen in the future, is uncertain. If we are looking
into the future (whether using crystal balls or
mathematical models), we must admit that many
of our assumptions, e.g., parameter values, cannot
even be calibrated let alone verified. Our conclu-
sions or estimates can be very sensitive to our
assumptions. One of our major challenges is to
communicate this uncertainty in understandable
ways to those who ask for our predictions.

2.4.2 Algorithms

Accompanying the improvements in the tech-
nology of computing that has had an enormous
impact on the capability of analysts to address
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and study increasingly complex issues in water
resource systems planning and management,
improvements made in the mathematical and
computational algorithms have permitted the
modeling of more complex systems problems.
All our algorithms that have been applied to the
analysis of water resource systems, have their
strengths and limitations. We still lack the ‘per-
fect’ all-purpose algorithm. And it is not likely
that we will find one in the future. Probably the
major determinant of a particular algorithm or
software package chosen to address a particular
problem or development opportunity is that
which the analyst is most familiar with and
experienced in using.

Nevertheless, the menu of available algo-
rithms that can be used for analyses is consid-
erably larger today than what it was when the
seminal book on the design of water resource
systems (Maas et al. 1962) was published over
six decades ago. At that time mathematical pro-
gramming (constrained optimization) software
applied to mainly deterministic linear and non-
linear problems dominated the interests of those
working toward improved models for prelimi-
nary screening of water resource systems prior to
more detailed simulation modeling. Simulations
were based on software and constrained by the
internal and magnetic tape memory capacity of
computers available at that time. Today our focus
is more on methods suited for enhancing stake-
holder participation. Much of it based on the
results of research in artificial intelligence,
examples including evolutionary search methods
based on biological processes, multi-agent mod-
eling, artificial neural networks, and data mining
methods.

2.4.3 Interactive Model-Building

Environments

Water resources planners and managers today
must consider the interests and goals of numer-
ous stakeholders. The planning, managing, and
decision-making processes involve negotiation
and compromise among these numerous stake-
holders, such as those shown in Fig. 2.5, who
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Fig. 2.5 Stakeholders
involved in river basin
planning and management,
each having different goals
and information needs

typically have different interests, objectives and
opinions about how their water resource system
should be managed. How do we model to meet
the information needs of all these different
stakeholders? How can we get them to believe in
and accept these models and their results? How
do we help them reach a common—shared—vi-
sion? How can we help create a shared vision
among all stakeholders of at least how their
system works and functions, if not how they
would like it to?

Today we know how to build some rather
impressive models of environmental systems. We
know how to incorporate within our models the
essential biology, chemistry and physics that
govern how the environmental system works. We
have also learned a little about how to include the
relevant economics, ecology, and engineering
into these models. Why do we do this? We do all

this modeling simply to be able to estimate, or
identify, and compare and evaluate the multiple
impacts resulting from different design and
management decisions we might make. Such
information, we assume, should be of value to
those responsible for choosing the ‘best’ decision.

If our goal is to help contribute to the solution
of, water resources problems, simply having
information from the world’s best models and
technology, as judged by our peers, is not a
guarantee of success. To be useful in the political
decision-making process, the information we
analysts generate with all our models and com-
puter technology must be understandable, credi-
ble, and timely. It must be just what is needed
when it is needed. It must be not too little and not
too much.

The optimal format and level of detail and
precision of any information generated from
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models should depend on the needs and back-
grounds of each individual involved in the
decision-making process. The value of such
information, even if the format and content are
optimal, will also depend on when it is available.
Information on an issue is only of value if it is
available during the time when the issue is being
considered—i.e., when there is an interest in that
issue and a decision concerning what to do about
it has not yet been made. That is the window of
opportunity when information can have an
impact. Information is of no value after the
decision is made unless of course that informa-
tion results in opening up another window of
opportunity.

If there is truth in the expression “decision
makers don’t know what they want until they
know what they can get,” how do modelers know
what decision-makers will need before even they
do? How will modelers know what is the right
amount and detail of information? How will they
know especially if they are to have that infor-
mation available, and in the proper form, before
or at, the time it is needed? Obviously modelers
cannot know this. However, over the past three
decades or so this challenge has been addressed
by developing and implementing decision sup-
port systems (DSSs) (Fedra 1992; Georgakakos
and Martin 1996; Loucks and da Costa 1991).
These interactive modeling and display tech-
nologies can, within limits, adapt to the level of
information needed and can give decision-makers
some control over data input, model operation,
and data output. But will each decision-maker,
each stakeholder, trust the model output? How
can they develop any confidence in the models
contained in a DSS? How can they modify those
models within a DSS to address issues the DSS
developer may not have considered? An answer
to these questions has been the idea of involving
the decision-makers themselves not only in
interactive model use, but in interactive model
building as well. This approach is commonly
termed collaborative modeling.

Figure 2.6 gives a general view of the com-
ponents of many decision support systems. The
essential feature is the interactive interface that
permits easy and meaningful data entry and
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display, and control of model (or computer)
operations. Depending on the particular issue at
hand, and more importantly the particular indi-
viduals and institutions involved, a decision
support system in the broadest sense can range
from minimal if any computer model use—
where the decision-makers provide all the data
and analyses, make the decision, and they or their
institutions implement those decisions—to deci-
sion support systems that are fully automated and
where no human involvement is present. The
latter are rare, but they do exist. The automatic
closing of the flood gates when there is a high
risk of flooding in Rotterdam harbor is an
example of this.

Involving stakeholders in model building
gives them a feeling of ownership. They will
have a much better understanding of just what
their model can do and what it cannot do. If they
are involved in model building, they will know
the assumptions built into their model. Being
involved in a joint modeling exercise is a way to
understand better the impacts of various
assumptions. While there may be no agreement
on the best of various assumptions to make,
stakeholders can learn which of those assump-
tions matter and which do not. In addition, just
the process of model development by numerous
stakeholders will create discussions that can lead
toward a better understanding of everyone’s
interests  and Though  such
model-building exercises, it is just possible those
involved will gain not only a better understand-
ing of everyone’s concerns, but also a common
or ‘shared’ vision of at least how their water
resource system (as represented by their model,
of course) works. Experience in stakeholder
involvement in model building suggests such
model-building exercises can also help multiple
stakeholders reach a consensus on how their real
system should be developed and managed.

In the US, one of the major advocates of
shared vision or collaborative modeling is the
Institute for Water Resources of the US Army
Corps of Engineers. They have applied their
interactive general-purpose model-building plat-
form in a number of exercises where conflicts
existed over the design and operation of water

concerns.
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Fig. 2.6 Common components of many decision support systems

systems (Hamlet et al. 1996a, b, c; Palmer et al.
1995; Werick et al. 1996). Each of these
model-building ‘shared-vision’ exercises inclu-
ded numerous stakeholders together with experts
in the use of the software. Bill Werick of the
Corps writes:

Because experts and stakeholders can build these
models together, including elements that interest
each group, they become a trusted, consensus view
of how the water system works as a whole, and
how it affects stakeholders and the environment.
Without adding new bureaucracies or reassigning
decision making authority, the shared vision model
and the act of developing it create a connectedness
among problems solvers that resembles the natural
integration of the conditions they study.

Now the question is how to get all the
stakeholders, many who may not really want to
work together, involved in a model-building
exercise. This is our challenge! One step in that
direction is the development of improved tech-
nologies that will facilitate model development
and use by stakeholders having various back-
grounds and interests. We need better tools for
building DSSs, not just better DSSs themselves.
We need to develop better modeling environ-
ments that people can use to make their own
models. Researchers need to be building the
model-building blocks, as opposed to the models
themselves. Researchers need to focus our
attention on improving those building blocks that
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can be used by others to build their own models.
Clearly if stakeholders are going to be involved
in model-building exercises, it will have to be an
activity that is enjoyable and require minimal
training and programming skills.

Traditional modeling experiences seem to
suggest that there are five steps in the modeling
process. First, the information the model is to
provide is identified. This includes measures of
system performance that are of interest to stake-
holders. These system performance measures are
defined as functions of the behavior or state of
the system being modeled. Next this behavior
needs to be modeled so the state of the system
associated with any ‘external’ inputs can be
predicted. This requires modeling the physical,
chemical, biological, economic, ecological, and
social processes that take place, as applicable, in
the represented system. Third, these two parts are
put together along with a means of entering the
‘external’ inputs and obtaining in meaningful
ways the outputs. Next the model must be cali-
brated and verified or validated, to the extent it
can. Only now can the model be used to produce
the information desired.

This traditional modeling process is clearly
not going to work for those who are not espe-
cially trained or experienced or even interested in
these modeling activities. They need a
model-building environment where they can
easily create models that

e they understand,

e are compatible with available data,

e work and provide the level and amount of
information needed,

e are easily calibrated and verified when pos-
sible, and

e give them the interactive control over data
input, editing, model operation and output
display that they can understand and need in
order to make informed decisions.

The challenge in creating such model-building
environments is in making them sufficiently
useful and attractive so that multiple stakeholders
will want to use them. They will have to be
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understandable. They will have to be relatively
easy and transparent, and even fun, to build.
They must be capable of simulating and pro-
ducing different levels of detail with regard to
natural, engineering, economic, and ecological
processes that take place at different spatial and
temporal scales. And they must require no pro-
gramming and debugging by the users. Just how
can this be done?

One approach is to develop interactive mod-
eling ‘shells’ specifically suited to modeling
environmental problems. Modeling ‘shells’ are
data-driven programs that become models once
sufficient data have been entered into them.

There are a number of such generic modeling
shells for simulating water resource systems.
AQUATOOL, RIBASIM, MIKE-BASIN and
WEAP are representative of interactive river-
aquifer simulation shells that require the system
to be represented by, and drawn in as, a network
of nodes and links (e.g., Fig 2.7 from WEAP).
Each node and link require data, and these data
depend on what that node and link represent, as
well as what the user wants to get from the output.
If what is of interest is the time series of quantities
of water flowing, or stored, within the system
resulting from reservoir operation and/or water
allocation policies, then water quality data need
not be entered, even though there is the capability
of modeling water quality. If water quality out-
puts are desired, then the user can choose the
desired various water quality constituents. Obvi-
ously, the more types of information desired or
the greater spatial or temporal resolution desired,
in the model output, the more input data required.

Interactive shells provide an interactive and
adaptive way to define models and their input
data. Once a model is defined, the shell provides
the interface for input data entry and editing,
model operation, and output data display.

To effectively use such shells, some training is
useful. This training pertains to the use of the
shell and what it can and cannot do. The devel-
opers of such shells have removed the need to
worry about data base management, solving
systems of equations, developing an interactive
interface, preserving mass balances and
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continuity of flow, and the like. Any assumptions
built into the shell should be readily transparent
and acceptable by all before its use in any shared
vision exercises.

2.4.4 Open Modeling Systems

The next step in shared-vision modeling will be
to create a modeling environment that will enable
all stakeholders to include their own models in
the overall system description. Stakeholders tend
to believe their own models more than those
provided by governmental agencies or research
institutes. Their own models include the data
they trust, and are based on their own assump-
tions and views on how the system works. For

example, in transboundary water resources
issues, different countries may want to include
their own hydrodynamic models for the river
reaches in their country.

Various developments on open modeling
systems are taking place in Europe and the United
States, although most of them are still in a
research phase. The implementation of the Water
Framework Directive in Europe has stimulated
the development of OpenMI (European Open
Modelling Interface and Environment). OpenMI
will simplify the linking of water-related models
that will be used in the strategic planning required
by the Water Framework Directive (Gijsbers et al.
2002). An initiative in the United States aims to
establish a similar framework for Environmental
Models (Whelan and Nicholson 2002).
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In our opinion the most important aspect of
model use today is communication. Unless water
resource planners and managers can articulate
well their needs for information, it will be diffi-
cult for modelers to generate such information. If
the modelers cannot communicate effectively
their modeling assumptions and results, or how
others can use their tools to obtain their own
results, little understanding will be gained from
such models. Both users and producers of mod-
eling analyses must work together to improve
communication. This takes time, patience, and
the willingness to understand what each has to
say and what is really meant by what is said.

To expect everyone to communicate effec-
tively and to fully understand one another may be
asking too much. As written in the Bible (Gen-
esis; Chapter 11, Verses 1-9) there was a time
when everyone on the earth was together and
spoke one language. It seems these people deci-
ded to build a tower “whose top may reach into
the heaven.” Apparently this activity got the
attention of the Lord, who for some reason did
not like this tower building idea. So, according to
the Bible, the Lord came down to earth and
“confounded the peoples language so they could
not understand one another.” They could no
longer work together to build their tower.

Is it any wonder we have to work hard to
communicate more effectively with one another,
even in our single, but multidisciplinary, field of
water resources planning and management?
Let all of us modelers or analysts, planners, and
managers work together to build a new tower of
understanding. To do this we need to control our
jargon and take the time to listen, communicate,
and learn from each other and from all of our
experiences. Who knows, if we are successful,
we may even have another visit from the Lord.

Those who are involved in the development of
water resource systems modeling methodology
know that the use of these models cannot guar-
antee development of optimal plans for water
resources development and management. Given
the competing and changing objectives and
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priorities of different interest groups, the concept
of an “optimal plan” is not very helpful or real-
istic. What modelers can do, however, is to
define and evaluate, in different levels of detail,
numerous alternatives that represent various
possible compromises among conflicting groups,
values, and management objectives. A rigorous
and objective analysis should help to identify the
possible tradeoffs among quantifiable objectives
so that further debate and analysis can be more
informed. The art of modeling is to identify those
issues and concerns that are important and sig-
nificant and to structure the analysis to shed light
on these issues.

Although water resources planning and man-
agement processes are not restricted to mathe-
matical modeling, such modeling is an important
part of those processes. Models can represent in a
fairly structured and ordered manner the impor-
tant interdependencies and interactions among
the various control structures and users of a water
resource system. Models permit an evaluation of
the economic and physical consequences of
alternative engineering structures, of various
operating and allocating policies, and of different
assumptions regarding future supplies, demands,
technology, costs, and social and legal require-
ments. Although models cannot define the best
objectives or set of assumptions, they can help
identify the decisions that best meet any partic-
ular objective and assumptions.

We should not expect, therefore, to have the
precise results of any quantitative systems study
accepted and implemented. A measure of the
success of any systems study resides in the
answer to the following questions: Did the study
have a beneficial impact in the planning and
decision-making process? Did the results of such
studies lead to a more informed debate over the
proper choice of alternatives? Did it introduce
competitive alternatives that otherwise would not
have been considered?

There seems to be no end of challenging water
resource systems planning problems facing water
resources planners and managers. How one
models any specific water resource problem
depends on (a) the objectives of the analysis;
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(b) the data required to evaluate the projects;
(c) the time, data, money, and computational
facilities available for the analysis; and (d) the
modeler’s knowledge and skill. Model develop-
ment is an art, requiring judgment in abstracting
from the real world the components that are
important to the decision to be made and that can
be illuminated by quantitative methods, and
judgment in expressing those components and
their interrelationships mathematically in the
form of a model. This art is to be introduced in
Chap. 3.
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Exercises

2.1
2.2
2.3
2.4
2.5
2.6

What is a system?

What is systems analysis?

What is a mathematical model?

Why develop and use models?

What is a decision support system?
What is shared vision modeling and
planning?

What characteristics of water resources
planning or management problems make
them suitable for analysis using quanti-
tative systems analysis techniques?
Identify some specific water resource
systems planning problems and for each
problem specify in words possible
objectives, the unknown decision vari-
ables whose values need to be deter-
mined, and the constraints or that must be
met by any solution of the problem.
From a review of the recent issues of var-
ious journals pertaining to water resources
and the appropriate areas of engineering,
economics, planning, and operations
research, identify those journals that con-
tain articles on water resources systems
planning and analysis, and the topics or
problems currently being discussed.

Many water resource systems planning
problems involve considerations that are
very difficult if not impossible to quantify,
and hence they cannot easily be incorpo-
rated into any mathematical model for
defining and evaluating various alternative
solutions. Briefly discuss what value these
admittedly incomplete quantitative mod-
els may have in the planning process when
nonquantifiable aspects are also important.
Can you identify some planning problems
that have such intangible objectives?

2.7

2.8

2.9

2.10
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2.11 Define integrated water management and
what that entails as distinct from just
water management.

Water resource systems serve many
purposes and can satisfy many objec-
tives. What is the difference between
purposes and objectives?

How would you characterize the steps of
a planning process aimed at solving a
particular problem?

2.12

2.13

Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.

2.14 Suppose you live in an area where the
only source of water (at a reasonable
cost) is from an aquifer that receives no
recharge. Briefly discuss how you might
develop a plan for its use over time.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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Water resources systems are characterized by
multiple interdependent components that produce
multiple economic, environmental, ecological,
and social impacts. Planners and managers
working to improve the performance of these
complex systems must identify and evaluate
alternative designs and operating policies, com-
paring their predicted performance with desired
goals or objectives. These alternatives are
defined by the values of numerous design,
management, and operating policy variables.
Constrained optimization together with simula-
tion modeling is the primary way we have of
identifying the values of the unknown decision
variables that will best achieve specified goals
and objectives. This chapter introduces opti-
mization and simulation modeling approaches
and describes what is involved in developing and
applying them to define and evaluate alternative
designs and operating policies.

3.1 Introduction

There are typically many different options
available to those planning and managing water
resource systems. It is not always clear what set
of particular design, management, and operating
policy decisions will result in the best overall
system performance. That is precisely why
modeling is done, to estimate the performance

© The Author(s) 2017

associated with any set of decisions and
assumptions, and to predict just how well various
economic, environmental, ecosystem, and social
or political objectives or goals will be met.

One important criterion for plan identification
and evaluation is the economic benefit or cost a
plan would entail were it to be implemented.
Other criteria can include the extent to which any
plan meets environmental, ecological, and social
targets. Once planning or management perfor-
mance measures (objectives) and various general
alternatives for achieving desired levels of these
performance measures have been identified,
models can be developed and used to help
identify specific alternative plans that best
achieve those objectives.

Some system performance objectives may be
in conflict, and in such cases models can help
identify the efficient tradeoffs among these
conflicting measures of system performance.
These tradeoffs indicate what combinations of
performance measure values can be obtained
from various system design and operating policy
variable values. If the objectives are the right
ones (that is, they are what the stakeholders
really care about), such quantitative tradeoff
information should be of value during the debate
over what decisions to make (Hipel et al. 2015).

Regional water resources development plans
designed to achieve various objectives typically
involve investments in land and infrastructure.
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Achieving the desired economic, environmental,
ecological, and social objective values over time
and space may require investments in storage
facilities, pipes, canals, wells, pumps, treatment
plants, levees, and hydroelectric generating
facilities, or in fact the removal of some of them.

Many capital investments can result in irre-
versible economic and ecological impacts. Once
the forest in a valley is cleared and replaced by a
lake behind a dam, it is almost impossible to
restore the site to its original condition. In parts
of the world where river basin or coastal
restoration activities require the removal of
engineering structures, such as in the Florida
Everglades discussed in Chap. 1, engineers are
learning just how difficult and expensive that
effort can be.

The use of planning models is not going to
eliminate the possibility of making mistakes.
These models can, however, inform. They can
provide estimates of the different impacts asso-
ciated with, say, a natural unregulated river sys-
tem and a regulated river system. The former can
support a healthier ecosystem that provides a
host of flood protection and water quality
enhancement services. The latter can provide
more reliable and cheaper water supplies for
off-stream users and increased hydropower and
some protection from at least small floods for
those living on flood-prone lands. In short,
models can help stakeholders assess the future
consequences, the benefits and costs, and a
multitude of other impacts associated with
alternative plans or management policies.

This chapter introduces some mathematical
modeling approaches commonly used to study
and analyze water resources systems. The mod-
eling approaches are illustrated by their applica-
tion to some relatively simple water resources
planning and management problems. The pur-
pose here is to introduce and compare some
commonly used modeling methods. This is not a
text on the state of the art of modeling. More
realistic and more complex problems usually
require much bigger and more complex models
than those introduced in this book, but these
bigger and more complex models are often based
on the principles and techniques presented here.

3 Models for Identifying and Evaluating Alternatives

The emphasis here is on the art of model de-
velopment: just how one goes about constructing
a model that will provide information needed to
study and address particular problems, and vari-
ous ways models might be solved. It is unlikely
anyone will ever use any of the specific models
developed in this or other chapters, simply
because they will not be solving the specific
example problems used to illustrate the different
approaches to model development and solution.
However, it is quite likely that water resources
managers and planners will use the modeling
approaches and solution methods presented in
this book to develop the models needed to ana-
lyze their own particular problems.

The water resource planning and management
problems and issues used here, or any others that
could have been used to illustrate model devel-
opment, can be the core of more complex models
addressing more complex problems in practice.
Water resources planning and management today
is dominated by the use of optimization and
simulation models. While computer software is
becoming increasingly available for solving
various types of optimization and simulation
models, no software currently exists that will
build those models themselves. What to include
and what not to include and what parameter
values to assume in models of water resource
systems requires judgment, experience, and
knowledge of the particular problem(s) being
addressed, the system being modeled and the
decision-making environment. Understanding
the contents of, and performing the exercises
pertaining to, this chapter will be a first step
toward gaining some judgment and experience in
model development and solution.

3.1.1 Model Components

Mathematical models typically contain one or
more algebraic equations or inequalities. These
expressions include variables whose values are
assumed to be known and others that are
unknown and to be determined. Variables that
are assigned known values are usually called
parameters. Variables having unknown values
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that are to be determined by solving the model
are called decision variables. Models are devel-
oped for the primary purpose of identifying the
best values of the latter and for determining how
sensitive those derived values are to the assumed
parameter values.

Decision variables can include design and
operating policy variables of various water
resources system components. Design variables
can include the active and flood storage capaci-
ties of reservoirs, the power generating capacity
of hydropower plants, the pumping capacity of
pumping stations, the waste removal efficiencies
of wastewater treatment plants, the dimensions or
flow capacities of canals and pipes, the heights of
levees, the hectares of an irrigation area, the
targets for water supply allocations, and so on.
Operating variables can include releases of water
from reservoirs or the allocations of water to
various users over space and time. Unknown
decision variables can also include measures of
system performance, such as net economic ben-
efits, concentrations of pollutants at specific sites
and times, ecological habitat suitability values or
deviations from particular ecological, economic,
or hydrological targets.

Models describe, in mathematical terms, the
system being analyzed and the conditions that the
system has to satisfy. These conditions are often
called constraints. Consider, for example, a
reservoir serving various water supply users
downstream. The conditions included in a model
of this reservoir would include the assumption
that water will flow in the direction of lower
heads (that is, downstream unless it is pumped
upstream), and the volume of water stored in a
reservoir cannot exceed its storage capacity. Both
the storage volume over time and the reservoir
capacity might be unknown and are to be deter-
mined. If the capacity is known or assumed, then
it is among the known model parameters.

Model parameter values, while assumed to be
known, can often be uncertain. The relationships
among various decision variables and assumed
known model parameters (i.e., the model itself)
may be uncertain. In these cases, the models can
be solved for a variety of assumed conditions and
parameter values. This provides an estimate of

75

just how important uncertain parameter values or
uncertain model structures are with respect to the
output of the model. This is called sensitivity
analysis. Sensitivity analyses will be discussed in
Chap. 8 in much more detail.

Solving a model means finding values of its
unknown decision variables. The values of these
decision variables can define a plan or policy.
They can also determine the costs and benefits or
the values of other measures of system perfor-
mance associated with that particular manage-
ment plan or policy. While the components of
optimization and simulation models can include
system performance indicators, model parame-
ters and constraints, the process of model de-
velopment and use also includes people. The
drawing shown in Fig. 3.1 (and in Chap. 2 as
well) illustrates some interested stakeholders
busy studying their river basin, in this case per-
haps with the use of a physical simulation model.
(Further discussion of stakeholder involvement
in the planning and management process is in
Chap. 13).

Whether a mathematical model or physical
model is being used, one important consideration
is that if the modeling exercise is to be of any
value, it must provide the information desired
and in a form that the interested stakeholders and
decision-makers can understand.

3.2 Plan Formulation and Selection

Plan formulation can be thought of as assigning
particular values to each of the relevant decision
variables. Plan selection is the process of evalu-
ating alternative plans and choosing the one that
best satisfies a particular objective or set of ob-
jectives. The processes of plan formulation and
selection involve modeling and communication
among all interested stakeholders, as the picture
in Fig. 3.1 suggests.

The planning and management issues being
discussed by the stakeholders in the basin pic-
tured in Fig. 3.1 could well include surface and
ground water allocations, reservoir operation,
water quality management, and infrastructure
capacity expansion over time.


http://dx.doi.org/10.1007/978-3-319-44234-1_8
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Fig. 3.1 These stakeholders have an interest in how their
watershed or river basin is managed. Here they are using a
physical model to help them visualize and address

3.2.1 Plan Formulation

Model building for defining alternative plans or
policies involves a number of steps. The first is to
clearly specify the issue or problem or decision
(s) to be made. What are the fundamental
objectives and possible alternatives? Such alter-
natives might require defining allocations of
water to various water users, the level of
wastewater treatment needed to maintain a
desired water quality in a receiving stream, the
capacities, and operating rules of multipurpose
reservoirs and hydropower plants, and the extent
and reliability of floodplain protection derived
from levees. Each of these decisions may affect
system performance criteria or objectives. Often
these objectives include economic measures of

planning and management issues. Mathematical models
often replace physical models, especially for planning and
management studies

performance, such as costs and benefits. They
may also include environmental and social
measures not expressed in monetary units. (More
detail on performance criteria is contained in
Chap. 9).

To illustrate this plan formulation process,
consider the task of designing a tank that can
store a fixed volume, say V, of water. Once the
desired shape has been determined, the task is to
build a model that can determine the values of all
the design variables and the resulting cost. Dif-
ferent designs result in different sizes and
amounts of materials, and hence different costs.
Assume the purpose of the model is to define the
set of design variable values that results in the
minimum total cost, for a range of values of the
required volume, V.


http://dx.doi.org/10.1007/978-3-319-44234-1_9
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The model of this problem must somehow
relate the unknown design variable values to the
cost of the tank. Assume, for example, a rectan-
gular tank shape. The unknown design variables
are the tank length, L, width, W, and height,
H. These are the unknown decision variables. The
objective is to find the combination of L, W, and
H values that minimizes the total cost of provid-
ing a tank capacity of at least V units of water.
This volume V will be one of the model param-
eters. Its value is assumed known even though in
fact it may be unknown and dependent in part on
its cost. But for now assume V is known.

The cost of the tank will be the sum of the
costs of the base, the sides, and the top. These
costs will depend on the area of the base, sides,
and top. Assume that we know the average costs
per unit area of the base, sides, and top of the
tank. These average unit costs of the base, sides,
and top will probably differ. They can be denoted
as Cpase» Csiges and Cqp, respectively. These unit
costs together with the tank’s volume, V, are the
parameters of the model. If L, W, and H are
measured in meters, then the areas will be
expressed in units of square meters and the vol-
ume will be expressed in units of cubic meters.
The average unit costs will be expressed in
monetary units per square meter.

The final step of model building is to specify
all the relations among the model parameters and
decision variables. This includes defining the
objective (cost) function (in this case just one
unknown variable, Cost) and all the conditions
that must be satisfied while achieving that
objective. It is often helpful to first state these
relationships in words. The result is a word
model. Once that is written, mathematical nota-
tion can be defined and used to convert the word
model to a mathematical model.

The word model for this tank design problem
is to minimize total cost where:

e Total cost equals the sum of the costs of the
base, the sides, and the top.

e Cost of the sides is the cost-per-unit area of
the sides times the total side area.
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e The total side area is twice the products of
length times height and width times height.

e Cost of the base is the cost-per-unit area of
the base times the total base area.

e Cost of the top is the cost-per-unit area of the
top times the total top area.

e The top and base area is the product of length
times width.

e The volume of the tank must at least equal the
required volume capacity.

e The volume of the tank is the product of the
length, width, and height of the tank.

Converting each of the above conditions to
mathematical expressions using the notation
defined above and inventing new notation when
needed results in:

e Total cost equals the sum of the costs of the
base, the sides, and the top.

Cost = sidecost + basecost + topcost

e Cost of the sides is the cost-per-unit area of
the sides times the total side area.
sidecost = Cygq. (sidearea)

e The total side area is twice the products of
length times height and width times height.
sidearea = 2(LH+WH)

e Cost of the base is the cost-per-unit area of
the base times the total base area.
basecost = Cy,e (basearea)

e Cost of the top is the cost-per-unit area of the
top times the total top area.
topcost = Ciop (toparea)

e The top and base area is the product of length
times width.
toparea = basearea = LW

e The volume of the tank must at least equal the
required volume capacity.
tankvolume = V

e The volume of the tank is the product of the
length, width, and height of the tank.
tankvolume = LWH

Combining some of the above conditions, a
mathematical optimization model can be written
as:
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Minimize Cost (3.1)

Subject to:

Cost = (Chase + Ciop) (LW) +2(Cige ) (LH + WH)
(3.2)

LWH>V (3.3)
Equation 3.3 permits the tank’s volume to be
larger than that required. While this is allowed, it
will cost more if the tank’s capacity is larger than
V, and hence the least-cost solution of this model
will surely show that the product LWH will equal
the required volume V. In practice, however,
there may be practical, legal, and/or safety rea-
sons why the decisions with respect to L, W, and
H may result in a capacity that exceeds V.

In this model, the unknown decision variables
include Cost, L, W, and H

The least-cost solution (using methods dis-
cussed in the next chapter) is

W =L =2Csige V / (Coase + Ctop)]l/3 (3.4)
and
H =V /[2CiV / (Couse + Cup)*  (3.5)
or
H = V'3[(Cosse + Ciop) / 2Csice)” (3.6)

The modeling exercise should not end here. If
there is any doubt about the value of any of the
parameters, a sensitivity analyses can be per-
formed on those uncertain parameters or
assumptions. In general, these assumptions could
include the values of the cost parameters (e.g.,
the costs-per-unit area) as well as the relation-
ships expressed in the model (that is, the model
itself). How much does the total cost change with
respect to a change in any of the cost parameters
or with the required volume V? How much does
any decision variable change with respect to
changes in those parameter values? What is the
percent change in a decision variable value given
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a unit percent change in some parameter value
(what economists call elasticity)?

If indeed the decision variable values do not
change significantly with respect to a change in
an uncertain parameter value, there is no need to
devote more effort to reducing that uncertainty.
Any time and money available for further study
should be directed toward those parameters or
assumptions that substantially influence the
model’s decision variable values.

This capability of models to help identify
what data or assumptions are important and what
are not can guide monitoring and data collection
efforts. This is a beneficial attribute of modeling
often overlooked.

Continuing with the tank example, after
determining, or estimating, all the values of the
model parameters and then solving the model to
obtain the cost-effective values of L, W and H,
we now have a design. It is just one of a number
of designs that could be proposed. Another de-
sign might be for a cylindrical tank having a
radius and height as well as cost decision vari-
ables. For the same volume V and unit area costs,
we would find that the total cost is less, simply
because the areas of the base, side, and top are
less.

In the above discussion, the required volume
capacity, V, has been assumed to be known. In
reality, it too may be a decision variable, and
what would be of greater value to
decision-makers is knowing the relationship
between various assumed values of V and their
respective minimum costs. Such a cost function
can be defined by solving the model (defined by
Eqgs. 3.1, 3.2 and 3.3) for various values of V.

Whatever the final outcome of our modeling
efforts, there might be other considerations or
criteria that are not expressed or included in the
model that might be important to those respon-
sible for plan (tank design) selection.

3.2.2 Plan Selection

There are various approaches to finding the
“best” plan or best set of decision variable values
that satisfy an objective or goal. By trial and
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error, one could identify alternative plans, eval-
uate the performance of each plan, and select the
particular plan whose performance is judged
better than the others. This process could include
a systematic simulation of a range of possible
solutions in a search for the best. When there are
a large number of feasible alternatives—that is,
many decision variables and many possible val-
ues for each of them—it may no longer be
practical to identify and simulate all feasible
combinations of decision variable values, or even
a small percentage of them. It would simply take
too long. In this case it is often convenient to use
an optimization procedure.

Equations 3.1-3.3 represent an optimization
problem. There are an infinite number of feasible
tank designs, i.e., alternative values of L, W, and
H that satisfy the volume requirement. Our job is
to find the least-cost one. We can do this using a
mathematical optimization method. Mathemati-
cal optimization methods are designed to make
this search for the best solution (or better solu-
tions) more efficient. Optimization methods are
used to identify those values of the decision
variables that satisfy specified objectives and
constraints  without  requiring  complete
enumeration.

While optimization models might help iden-
tify the decision variable values that will produce
the best plan directly, they are based on all the
assumptions incorporated in the model. Often
these assumptions are limiting. In these cases, the
solutions resulting from optimization models
should be analyzed in more detail, perhaps
through simulation methods, to improve the
values of the decision variables and to provide
more accurate estimates of the impacts associated
with those decision variable values. In these sit-
uations, optimization models are used for
screening out the clearly inferior solutions, not
for finding the very best one. Just how screening
can be performed using optimization models will
be discussed in the next chapter.

The values that the decision variables may
assume are rarely unrestricted. Usually various
functional relationships among these variables
must be satisfied. This is what is expressed in
constraint Eq. 3.3. For example, the tank has to
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be able to contain a given amount of water. In a
water allocation problem, any water allocated to
and completely consumed by one user cannot
simultaneously or subsequently be allocated to
another user. Storage reservoirs cannot store
more water than their maximum storage capaci-
ties. Technological restrictions may limit the
capacities and sizes of pipes, generators, and
pumps to those commercially available. Water
quality concentrations should not exceed those
specified by water quality standards or regula-
tions. There may be limited funds available to
spend on water resources development or
infrastructure projects. These are a few examples
of physical, legal, and financial conditions or
constraints that may restrict the ranges of deci-
sion variable values in the solution of a model.

Equations or inequalities can generally
express any physical, economic, legal, or social
restrictions on the values of the decision vari-
ables. Constraints can also simply define rela-
tionships among decision variables. For example,
Eq. 3.2 above defines a new decision variable
called Cost as a function of other decision vari-
ables and model parameters. In general, con-
straints describe in mathematical terms the
system being analyzed. They define the system
components and their interrelationships, and the
permissible ranges of values of the decision
variables, either directly or indirectly.

Typically, there exist many more decision
variables than constraints, and hence, if any
feasible solution exists, there may be many such
solutions that satisfy all the constraints. The
existence of many feasible alternatives is a
characteristic of most water resources systems
planning problems. Indeed it is a characteristic of
most engineering design and operation problems.
The particular feasible solution or plan that sat-
isfies the objective function—that is, that maxi-
mizes or minimizes it—is called optimal. It is the
optimal solution of the mathematical model, but
it may not necessarily be considered optimal by
any decision-maker. What is optimal with respect
to a model may not be optimal with respect to
those involved in a planning or decision-making
process. To repeat what was written in Chap. 2,
models are used to provide information (useful
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information, one hopes), to the decision-making
process. Model solutions are not replacements
for judgments of individuals involved in the
decision-making process.

3.3 Conceptual Model
Development

Prior to the selection or development of a quan-
titative model, it is often useful to develop a
conceptual one. Conceptual models are non-
quantitative representations of a system. The
system components and their interactions are
defined often by diagrams similar to Fig. 3.2.
Figure 3.2 illustrates the form of a conceptual
model. This example conceptual model defines
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the relationships between what land and water
managers can do and the eventual ecological
impacts of those actions. Once a conceptual
model has been quantified (expressed in mathe-
matical terms), it becomes a mathematical model.
The model’s equations typically include vari-
ables whose values are unknown and can vary,
and parameters whose values are assumed
known.

The values of the model’s parameters need to
be determined. Model calibration involves find-
ing the best values for these parameters. Cali-
bration is based on comparisons of the model
results with observed data. Optimization methods
can sometimes be used to identify the values of
model parameters. This is called model calibra-
tion or identification. (Illustrations of the use of

M

4 i
( land and water management practices and policies )
e S Sy

| [
( hydrologic consequences )
] E—— [

o—f\—l

( ecosystem habitat & function impacts )
| == | ] |
| [ | | I

( impacts on specific species )
I L | | |

g,
’19\
N

Fig. 3.2 An outline of a conceptual model without its
detail (i.e., what exactly each component or box repre-
sents), showing the links representing interactions among

components and between management decisions and
specific system impacts
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optimization for estimating model parameter
values are presented in the following chapter.)
Sensitivity analysis may serve to identify the
impacts of uncertain parameter values and show
which parameter values substantially influence
the model’s results or solutions. Following cali-
bration, the remaining uncertainties in the model
predictions may be quantified in an uncertainty
analysis as discussed in Chap. 8.

In addition to being calibrated, simulation
models should also be validated or verified. In
the validation or verification process, the model
results are compared with an independent set of
measured observations that were not used in
calibration. This comparison is made to deter-
mine whether or not the model describes the
system behavior sufficiently accurately.

3.4 Simulation and Optimization

The modeling approach to tank design discussed
in the previous section focused on the use of
optimization methods to identify the preferred
design variable values. Similar optimization
methods can be used to identify preferred design
variable values and operating policies for urban
stormwater runoff control or multiple reservoir
systems, given various assumptions regarding
parameter values and design and operating ob-
jectives. Once these preferred designs and oper-
ating policies have been identified, unless there is
reason to believe that a particular alternative is
really the best and needs no further analysis, each
of these preferred alternatives can be further
evaluated with the aid of more detailed and ro-
bust simulation models.

Simulation models address “what if’ ques-
tions: What will likely happen over time at one or
more specific places if a particular design and/or
operating policy is implemented? Simulation
models are not limited by many of the assump-
tions incorporated into optimization models. For
example, the inputs to simulation models can
include a much longer time series of hydrologi-
cal, economic, and environmental data such as
rainfall or streamflows, water supply demands,
pollutant loadings and so on, than would likely
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be included in an optimization model. The
resulting outputs can better identify the variations
of multiple system performance indicator values:
that is, the multiple hydrological, ecological,
economic, environmental, and social impacts that
might be observed over time, given any partic-
ular system design and operating policy.

Simulating multiple sets of values defining the
designs and operating policies of a water
resources system can take a long time. Consider,
for example, 30 infrastructure capacity variables
whose values are to be determined. Even if only
two possible values are assumed for each of the
30 variables (such as to exist at some predeter-
mined capacity or not), the number of combina-
tions that could be simulated amounts to 2°° or in
excess of 10°. Simulating and comparing even
1% of these billion at a minute per simulation
amounts to over twenty years, continuously—
24 h per day. Most simulation models of water
resources systems contain many more variables,
each having a larger range of feasible values, and
are much more complex than this simple
30-binary-variable example. Mathematically, if
not in reality, there could be an infinite combi-
nation of feasible values for each of the decision
variables.

Simulation works well when there are only a
relatively few alternatives to be evaluated, not
when there are a large number of them. The trial
and error process of simulation can be time con-
suming. An important role of optimization meth-
ods is to reduce the number of alternatives for
simulation analyses. However, if only one method
of analysis is to be used to evaluate a complex
water resources system, simulation together with
human judgment concerning which alternatives to
simulate is often the method of choice.

Simulation can be based on either discrete
events or discrete time periods. Most simulation
models of water resources systems are designed
to simulate a sequence of events over a number
of discrete time periods. In each discrete time
period, the simulation model converts all the
initial conditions and inputs to outputs. The
duration of each period depends in part on the
particular system being simulated and the ques-
tions being addressed.
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3.4.1 Simulating a Simple Water
Resources System

Consider the case of a potential reservoir releasing
water to downstream users (Fig. 3.3). A reservoir
and its operating policy can increase the benefits
each user receives over time by providing
increased flows during periods of otherwise low
flows relative to the user demands. Of interest is
whether or not the increased benefits the water
users obtain from an increased and more reliable
downstream flow conditions will offset the costs
of the reservoir.

Before this system can be simulated, one has
to define the active storage capacity of the reser-
voir and how much water is to be released
depending on the storage volume and time period.
In other words, one has to define the reservoir
operating policy. In addition, one must also define
the allocation policy: how much of the released
water to allocate to each user and to the river
downstream of the users.

There are literally an infinite number of pos-
sible design and operating policy variable values.
The next section will address the problem of
screening these alternatives to find those values
that are most worthy of further study using
simulation.

For this simple illustration assume the oper-
ating and allocation policies are as shown in
Fig. 3.4. Also for simplicity assume they apply
to each discrete time period. The reservoir

3 Models for Identifying and Evaluating Alternatives

operating policy, shown as a red line in upper
Fig. 3.4, attempts to meet a release target. If
insufficient water is available, all the water will
be released in the time period. If the inflow
exceeds the target flow and the reservoir is full, a
spill will occur.

This operating policy is sometimes called the
“standard” operating policy. It is not usually
followed in practice. Most operators, as indeed
specified by most reservoir operating policies,
will reduce releases in times of drought in an
attempt to save some water in the reservoir for
future releases in case of an extended period of
low inflows. This is called a hedging policy. Any
reservoir release policy, including a hedging
policy, can be defined within the blue portion of
the release policy plot shown in Fig. 3.4. The
dash—dot line in Fig. 3.4 is one such hedging
function. Once defined, any reservoir operating
policy can be simulated.

The simulation process for the three-user
system is shown in Fig. 3.5. It proceeds from
one time period to the next. The reservoir inflow,
obtained from a database, is added to the existing
storage volume, and a release is determined
based on the release policy (upper Fig. 3.4).
Once the release is known, the final storage
volume is computed and this becomes the initial
volume for the next simulation time period. The
reservoir release is then allocated to the three
downstream users and to the river downstream of
those users as defined by the allocation policy

user 2

reservoir

user 1

user 3

Fig. 3.3 Conceptual model of a reservoir water allocation system to be simulated



3.4 Simulation and Optimization

83

—> release

release target

zone of feasible release

spill = release on areas
of target release

storage capacity

2 —>> initial storage and inflow
§ 10
{(—é -
8 8t} user 3
= 5
6 L
5 river Q
4|
I Ar 1
27 / user 2
o L L lrr L L L L L L L L L L L L J
0 2 4 6 8 10 12 14 16 18 20
§ —> reservoir release flow

Fig. 3.4 Reservoir operating policy defining the reser-
voir release to be made as a function of the current storage
volume and current inflow and the allocation policy for
the river flow downstream of the reservoir. The blue zone

(lower Fig. 3.4). The resulting benefits can be
calculated and stored in an output database.
Additional data including storage volumes,
releases, and the allocations themselves can also
be stored in the output database, as desired. The

in the reservoir release policy indicates the zone of
feasible releases. It is physically impossible to make
releases represented by points outside that blue zone

simulation process continues for the duration of
the simulation run. Then the output data can be
summarized for later comparison with other sim-
ulation results based on other reservoir capacities,
operation policies and/or allocation policies.
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Fig. 3.5 Flow diagram of the reservoir—user allocation system simulation process. The simulation terminates after

some predefined number of simulation time steps

It would not be too difficult to write a com-
puter program to perform this simulation. In fact,
it can be done on a spreadsheet. However as easy
as that might be for anyone familiar with com-
puter programming or spreadsheets, one cannot
expect it to be easy for many practicing water
resources planners and managers who are not
doing this type of work on a regular basis. Yet
they might wish to perform a simulation of their
particular system, and to do it in a way that
facilitates changes in many of its assumptions.
Computer programs capable of simulating a wide
variety of water resources systems are becoming
increasingly available. Simulation programs
together with their interfaces that facilitate the
input and editing of data and the display of
output data are typically called decision support
systems. Their input data define the components
of the water resources system and their configu-
ration. Inputs also include hydrological data and
design and operating policy data. These generic
simulation programs are capable of simulating
surface and ground water flows, storage volumes

and qualities under a variety of system infras-
tructure designs and operating policies.

3.4.2 Defining What to Simulate

Before the simple system shown in Fig. 3.3 can
be simulated the design and operating policy of
the system, i.e., the information shown in
Fig. 3.4 needs to be defined. One way to do this
is to use optimization. Optimization is driven by
an objective function. Assume an overall mea-
sure of system performance has been decided
upon, and can be expressed as a function of the
decision variables. These decision variables
include all the information in Fig. 3.3, namely
the reservoir capacity and reservoir storage and
release and water user allocation decisions in
each time period. Of interest are the values of
these decision variables that achieve the highest
level of system performance. The use of an
optimization model will help in defining those
variable values.
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Expressed in words, the optimization model is
to be developed and used to identify the decision
variable values that maximize system perfor-
mance. Let B(K, S, R, A) represent the overall
system performance measure, as a function of the
reservoir capacity K, and all the initial storage
volumes, S(7), releases, R(f), and water alloca-
tions to users i, A(i,f), in each time period ¢ for a
total of T time periods. Hence the objective is to

maximize B (K,S,R,A) (3.7)

while making sure that a mass balance of water is
maintained in the reservoir over time.

S(t) 4+ Inflow () —R(¢) = S(t + 1)
(and period T+1 = 1)
(3.8)

for each period ¢

These mass balance equations define the
relationship between initial, S(¢), and final, S
(t + 1) storage volume values in each period ¢,
and equate the final storage value in each period
to the initial value in the following period.
Finally, it assumes the entire simulation process
repeats itself after every T years.

The next set of constraints ensure that the
storage volumes, S(¢), do not exceed the reservoir
storage capacity K and that the allocations, A(i,
1), to the three water users i do not exceed the
reservoir release, R(¢), less the amount to remain
in the stream, Q(7).

S(t) <K for each period ?. (3.9)

A(l,t) +AQ2,1) +A(3,1) <R(1)—Q(1)
: (3.10)
for each period .

This simple example ignores many of the
details one should consider when modeling
reservoirs and water users, and many of these
details will be discussed, and modeled, in sub-
sequent chapters. But for now the model is suf-
ficient to find values for each decision variable
shown in upper portion of Fig. 3.4. The alloca-
tion policies shown in the lower portion of
Fig. 3.4 can be obtained by solving a separate
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single-period optimization model containing only
the allocation benefits as the objective, B(A), and
constraint 3.10 for a single period, and various
values of the water available, R — Q, assuming
the benefits, B(A), do not change over time.

Maximize B(A(1),A(2),A(3)) (3.11)
Subject to:
A()+AQR)+A(B)<R-Q 6.12)

for various values of R, given Q.

3.4.3 Simulation Versus Optimization

Unlike simulation models, the solutions of opti-
mization models are based on objective functions
that are to be maximized or minimized. The
objective function and constraints of an opti-
mization model contain decision variables that are
unknown and parameters whose values are
assumed known. Constraints are expressed as
equations and inequalities. The tank model
(Egs. 3.1, 3.2 and 3.3) is an example of an opti-
mization model. So is the reservoir water alloca-
tion model, Eqs. 3.7-3.10 and the single-period
allocation model Eqs. 3.11 and 3.12.

The solution of an optimization model, if one
exists, contains the values of all of the unknown
decision variables. It is mathematically optimal
in that the values of the decision variables satisfy
all the constraints and maximize or minimize an
objective function. This “optimal” solution is of
course based on the assumed values of the model
parameters, the chosen objective function and the
structure of the model itself. At best these
assumptions can only approximate reality.

The assumptions made to permit model solu-
tion by optimization solution procedures (algo-
rithms), may justify a more detailed and more
realistic simulation to check and improve on any
solution obtained from that optimization. While
the results from a simulation model may be more
realistic, both optimization and simulation models
are approximations of the real system being
modeled. The optimal solution of any model is
optimal only with respect to the particular model,
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Fig. 3.6 Distinguishing between simulation and opti-
mization modeling. Simulation addresses “what if”” ques-
tions; optimization can address “what should be”

not necessarily with respect to the real system. Itis
important to realize this limited meaning of the
word “optimal,” a term commonly found in papers
published by water resources and other systems
analysts, planners, and engineers.

Figure 3.6 illustrates the broad differences
between simulation and optimization. Optimiza-
tion models need explicit expressions of objec-
tives. Simulation models do not. Simulation
simply addresses “what-if” scenarios—what may
happen if a particular scenario is assumed or if a
particular decision is made. Users of simulation
models must specify the values of design and
operating decision variables before a simulation
can be performed. Once these values of all
decision variables are defined, simulation can
provide more precise estimates of the impacts
that may result from those decisions.

While optimization will tell us what we should
do—what the best decision is—that solution is
often based on many limiting assumptions.
Because of this, we need to use optimization not
as a way to find the best solution, but to define a
relatively small number of good alternatives that
can later be tested, evaluated, and improved by
means of more detailed simulations. This process
of using optimization to reduce the large number

questions. Both types of models are typically used in
water resources planning and management studies

of plans and policies to a few that can then be
simulated and better evaluated is often called
preliminary screening.

3.5 Conclusions

This chapter has reviewed some basic types of
models and presented guidelines for their use.
Generic models for water resources system anal-
yses are increasingly becoming available, saving
many organizations from having to develop their
own individual models. While many readers of
this book may get involved in writing their own
models, most of those involved in water resources
planning and management will be using existing
models and analyzing and presenting their results.
The information provided in this book is intended
to help those who wish to build their modeling
skills. Such skills will be useful to those involved
in water resource systems planning and manage-
ment activities. Such skills may be useful even to
those who are expected to oversee or evaluate the
model results of others (say from various UN,
World Bank, or national aid agencies) who are
involved in analyzing particular water resource
systems in particular regions of the world.
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Exercises

3.1 Briefly outline why multiple disciplines
are needed to efficiently and effectively
manage water resources in major river
basins, or even in local watersheds.

3.2 Describe in a page or two what some of
the water management issues are in the
region where you live.

3.3 Define adaptive management,
vision modeling, and sustainability.

3.4 Distinguish what a manager does from
what an analyst (modeler) does.

3.5 Identify some typical or common water
resources planning or management prob-
lems that are suitable for analysis using
quantitative systems analysis techniques.

shared

Flows (m?/day)
A

Inflow

3 Models for Identifying and Evaluating Alternatives

3.6 Consider the following five alternatives
for the  production of  energy
(10° kwh/day) and irrigation supplies
(10° m*/month):

Alternative Energy production Irrigation supply
A 22 20
B 10 35
C 20 32
D 12 21
E 6 25

Which alternative would be the best in your
opinion and why? Why might a decision-
maker select alternative E even realizing
other alternatives exist that can give more
hydropower energy and irrigation supply?

3.7 Define a model similar to Egs. 3.1-3.3 for
finding the dimensions of a cylindrical
tank that minimizes the total cost of stor-
ing a specified volume of water. What are
the unknown decision variables? What are
the model parameters? Develop an itera-
tive approach for solving this model.

3.8 Briefly distinguish between simulation and
optimization.

3.9 Consider a tank, a lake or reservoir or an
aquifer having inflows and outflows as
shown in the graph below.

4
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Exercises
(a)
(b)
(c)
(d)

When was the inflow its maximum
and minimum values?

When was the outflow its minimum
value?

When was the storage volume its
maximum value?

When was the storage volume its
minimum value?

Flows (m?/day)
A

100

50

89

(e) Write a mass balance equation for the

time series of storage volumes
assuming constant inflows and out-
flows during each time period.

3.10 Given the changing inflows and constant
outflow from a tank or reservoir, as shown
in the graph below, sketch a plot of the

0 L : >
012345678 910111?131415161718;192021222324
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3.11

3.12

3.13

<
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storage volumes over the same period of
time, beginning at 150. Show how to
determine the value of the slope of the
storage volume plot at any time from the
inflow and outflow (= 50 m*/day) graph
below.

Describe, using words and a flow diagram,
how you might simulate the operation of a
storage reservoir over time. To simulate a
reservoir, what data do you need to have
or know?

Identify and discuss a water resources
planning situation that illustrates the need
for a combined optimization-simulation
study in order to identify the best plan and
its impacts.

Write a flow chart/computer simulation
program for computing the maximum
yield of water that can be obtained given
any value of active reservoir storage
capacity, K, using.

3 Models for Identifying and Evaluating Alternatives

3.14

3.15

3.16

3.17

Find the values of the storage capacity K
required for yields of 2, 3, 3.5, 4, 4.5, and 5.
How many different simulations of a water
resource system would be required to
ensure that there is at least a 95% chance
that the best solution obtained is within the
better 5% of all possible solutions that
could be obtained? What assumptions must
be made in order for your answer to be
valid? Can any statement be made com-
paring the value of the best solution
obtained from the all the simulations to the
value of the truly optimal solution?
Assume in a particular river basin 20
development projects are being proposed.
Assume each project has a fixed capacity
and operating policy and it is only a ques-
tion of which of the 20 projects would
maximize the net benefits to the region.
Assuming 5 min of computer time is
required to simulate and evaluate each
combination of projects, show that it would
require 36 days of computer time even if
99% of the alternative combinations could
be discarded using “good judgment.” What
does this suggest about the use of simula-
tion for regional interdependent multipro-
ject water resources planning?

Assume you wish to determine the alloca-
tion of water X; to three different users j,
who obtain benefits R;(X;). The total water
available is Q. Write a flow chart showing
how you can find the allocation to each user
that results in the highest total benefits.
Consider the allocation problem illustrated
below.

User 2

Flow Q, Year y Flow Q,
5 9 3
7 10 6
8 11 8
4 12 9
3 13 3
3 14 4
2 15 9
1
Gage site

User 1

User 3




Exercises

The allocation priority in each simulation per-
iod ¢ is:

First 10 units of streamflow at the gage remain
in the stream.

Next 20 units go to User 3.

Next 60 units are equally shared by Users 1
and 2.

Next 10 units go to User 2.

Remainder goes downstream.

(a) Assume no incremental flow along the
stream and no return flow from users.
Define the allocation policy at each site.

Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
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credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.
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This will be a graph of the allocation as a
function of the flow at the allocation site.

(b) Simulate this allocation policy using any
river basin simulation model such as
RIBASIM, WEAP, Modsim, or other
selected model, including your own, for
any specified inflow series ranging from 0
to 130 units.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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Water resource systems are characterized by
multiple interdependent components that toge-
ther produce multiple economic, environmental,
ecological, and social impacts. As discussed in
the previous chapter, planners and managers
working toward improving the design and per-
formance of these complex systems must identify
and evaluate alternative designs and operating
policies, comparing their predicted performance
with desired goals or objectives. Typically, this
identification and evaluation process is accom-
plished with the aid of optimization and simula-
tion models. While optimization methods are
designed to provide preferred values of system
design and operating policy variables—values
that will lead to the highest levels of system
performance—they are often used to eliminate
the clearly inferior options. Using optimization
for a preliminary screening followed by more
detailed and accurate simulation is the primary
way we have, short of actually building physical
models, of estimating effective system designs
and operating policies. This chapter introduces
and illustrates the art of optimization model de-
velopment and use in analyzing water resources
systems. The models and methods introduced in
this chapter are extended in subsequent chapters.

4.1 Introduction

This chapter introduces some optimization
modeling approaches for identifying ways of
satisfying specified goals or objectives. The

© The Author(s) 2017

modeling approaches are illustrated by their
application to some relatively simple water
resources planning and management problems.
The purpose here is to introduce and compare
some commonly used optimization methods and
approaches. This is not a text on the state of the
art of optimization modeling. More realistic and
more complex problems usually require much
bigger and more complex models than those
developed and discussed in this chapter, but
these bigger and more complex models are often
based on the principles and techniques intro-
duced here.

The emphasis here is on the art of model
development—just how one goes about con-
structing and solving optimization models that
will provide information useful for addressing
and perhaps even solving particular problems. It
is unlikely anyone will ever use any of the
specific models developed in this or other chap-
ters simply because the specific examples used to
illustrate the approach to model development and
solution will not be the ones they face. However,
it is quite likely water resource managers and
planners will use these modeling approaches and
solution methods to analyze a variety of water
resource systems. The particular systems mod-
eled and analyzed here, or any others that could
have been used, can be the core of more complex
models needed to analyze more complex prob-
lems in practice.

Water resources planning and management
today is dominated by the use of optimization
and simulation models. Computer software is
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becoming increasingly available for solving
various types of optimization and simulation
models. However, no software currently exists
that will build models of particular water
resource systems. What and what not to include
and assume in models requires judgment, expe-
rience, and knowledge of the particular problems
being addressed, the system being modeled and
the decision-making environment—including
what aspects can be changed and what cannot.
Understanding the contents of this and following
chapters and performing the suggested exercises
at the end of each chapter can only be a first step
toward gaining some judgment and experience in
model development.

Before proceeding to a more detailed discus-
sion of optimization, a review of some methods
of dealing with time streams of economic
incomes or costs (engineering economics) may
be useful. Those familiar with this subject that is
typically covered in applied engineering eco-
nomics courses can skip this next section.

4.2 Comparing Time Streams
of Economic Benefits and Costs

All of us make decisions that involve future
benefits and costs. The extent to which we value
future benefits or costs compared to present
benefits or costs is reflected by what is called a
discount rate. While economic criteria are only
one aspect of everything we consider when
making decisions, they are often among the
important ones. Economic evaluation methods
involving discount rates can be used to consider
and compare alternatives characterized by vari-
ous benefits and costs that are expected to occur
now and in the future. This section offers a quick
and basic review of the use of discount rates that
enable comparisons of alternative time series of
benefits and costs. Many economic optimization
models incorporate discount rates in their eco-
nomic objective functions.

Engineering economic methods typically
focus on the comparison of a discrete set of

An Introduction to Optimization Models and Methods

mutually exclusive alternatives (only one of
which can be selected) each characterized by a
time series of benefits and costs. Using various
methods involving the discount rate, the time
series of benefits and costs are converted to a
single net benefit that can be compared with
other such net benefits in order to identify the one
that is best. The values of the decision variables
(e.g., the design and operating policy variable
values) are known for each discrete alternative
being considered. For example, consider again
the tank design problem presented in the previ-
ous chapter. Alternative tank designs could be
identified, and then each could be evaluated, on
the basis of cost and perhaps other criteria as
well. The best would be called the optimal one, at
least with respect to the objective criteria used
and the discrete alternatives being considered.
The optimization methods introduced in the
following sections of this chapter extend those
engineering economics methods. Some methods
are discrete, some are continuous. Continuous
optimization methods, such as the model defined
by Eqgs. 3.1-3.3 in Sect. 3.2 of the previous
chapter can identify the “best” tank design
directly without having to identify and compare
numerous discrete, mutually exclusive alterna-
tives. Just how such models can be solved will be
discussed later in this chapter. For now, consider
the comparison of alternative discrete plans
p having different benefits and costs over time.
Let the net benefit generated at the end of time
period 7 by plan p be designated simply as B"(z).
Each plan is characterized by the time stream
of net benefits it generates over its planning
period T,
{B*(1),B"(2),B"(3),...,B"(T}) 4.1
Clearly, if in any time period ¢ the benefits
exceed the costs, then BP(¢) > 0; and if the costs
exceed the benefits, BP(r)<0. This section
defines two ways of comparing different benefit,
cost or net-benefit time streams produced by
different plans perhaps having different planning
period durations Ty,
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4.2.1 Interest Rates
Fundamental to the conversion of a time series of
incomes and costs to an equivalent single value, so
that it can be compared to other equivalent single
values of other time series, is the concept of the
time value of money. From time to time, individ-
uals, private corporations, and governments need
to borrow money to do what they want to do. The
amount paid back to the lender has two compo-
nents: (1) the amount borrowed and (2) an addi-
tional amount called interest. The interest amount
is the cost of borrowing money, of having the
money when it is loaned compared to when it is
paid back. In the private sector the interest rate, the
added fraction of the amount owed that equals the
interest, is often identified as the marginal rate of
return on capital. Those who have money, called
capital, can either use it themselves or they can
lend it to others, including banks, and receive
interest. Assuming people with capital invest their
money where it yields the largest amount of
interest, consistent with the risk they are willing to
take, most investors should be receiving at least the
prevailing interest rate as the return on their capital.
Any interest earned by an investor or paid by
a debtor depends on the size of the loan, the
duration of the loan, and the interest rate. The
interest rate includes a number of considerations.
One is the time value of money (a willingness to
pay something to obtain money now rather than
to obtain the same amount later). Another is the
risk of losing capital (not getting the full amount
of a loan or investment returned at some future
time). A third is the risk of reduced purchasing
capability (the expected inflation over time). The
greater the risks of losing capital or purchasing
power, the higher the interest rate compared to
the rate reflecting only the time value of money
in a secure and inflation-free environment.

422 Equivalent Present Value

To compare projects or plans involving different
time series of benefits and costs, it is often con-
venient to express these time series as a single
equivalent value. One way to do this is to convert

each amount in the time series to what it is worth
today, its present worth, that is, a single value at
the present time. This present worth will depend
on the prevailing interest rate in each future time
period. Assuming a value Vj is invested at the
beginning of a time period, e.g., a year, in a
project or a savings account earning interest at a
rate r per period, then at the end of the period the
value of that investment is (1 + r)Vj,.

If one invests an amount V; at the beginning
of period t =1 and at the end of that period
immediately reinvests the total amount (the
original investment plus interest earned), and
continues to do this for n consecutive periods at
the same period interest rate r, the value, V,, of
that investment at the end of n periods would be

V= Vo(1+7)" (4.2)

This results from V| = V,,/(1 4 r) at the end of
period 1, Vo = V1 /(1 +r) = Vo(1 +r)*attheend
of period 2, and so on until at the end of period n.

The initial amount V, is said to be equivalent
to V,, at the end of n periods. Thus the present
worth or present value, V,,, of an amount of
money V,, at the end of period n is

Vo=V,/(1+r)" (4.3)

Equation 4.3 is the basic compound interest
discounting relation needed to determine the
present value at the beginning of period 1 (or end
of period 0) of net benefits V,, that accrue at the
end of n time periods.

The total present value of the net benefits
generated by plan p, denoted V}, is the sum of
the values of the net benefits VP(¢) accrued at the
end of each time period 7 times the discount
factor for that period ¢. Assuming the interest or
discount rate r in the discount factor applies for
the duration of the planning period, i.e., from
t=1tor=T,.

VE= > V() /(1+r)

=1,T,

(4.4)

The present value of the net benefits achieved
by two or more plans having the same economic
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planning horizons T}, can be used as an economic
basis for plan selection. If the economic lives or
planning horizons of projects differ, then the
present value of the plans may not be an appro-
priate measure for comparison and plan selection.
A valid comparison of alternative plans using
present values is possible if all plans have the
same planning horizon or if funds remaining at
the end of the shorter planning horizon are
invested for the remaining time up until the longer
planning horizon at the same interest rate r.

4.2.3 Equivalent Annual Value

If the lives of various plans differ, but the same
plans will be repeated on into the future, then one
need to only compare the equivalent constant
annual net benefits of each plan. Finding the
average or equivalent annual amount V? is done
in two steps. First, one can compute the present
value, Vg, of the time stream of net benefits,
using Eq. 4.4. The equivalent constant annual
benefits, VP, all discounted to the present must
equal the present value, V}.

vy Z VP/(1+r) or

=11,

VDR VIEENG

=1,

" (4.5)

Using a little algebra the average annual
end-of-year benefits V* of the project or plan p is

VP =VE[r(1+n)"]/[(1+1) = 1] (4.6)

The capital recovery factor CRF, is the
expression [r(1+r)"]/[(1+7)" — 1] in Eq. 4.6
that converts a fixed payment or present value V}
at the beginning of the first time period into an
equivalent fixed periodic payment VP at the end
of each time period. If the interest rate per period
is r and there are n periods involved, then the
capital recovery factor is

CRF, = [r(1+7)"])/[(1+1r)" = 1] (4.7)

An Introduction to Optimization Models and Methods

This factor is often used to compute the
equivalent annual end-of-year cost of engineer-
ing structures that have a fixed initial construc-
tion cost Cy and annual end-of-year operation,
maintenance, and repair (OMR) costs. The
equivalent uniform end-of-year total annual cost,
TAC, equals the initial cost times the capital
recovery factor plus the equivalent annual
end-of-year uniform OMR costs.

TAC = CRF, Cy + OMR (4.8)

For private investments requiring borrowed
capital, interest rates are usually established, and
hence fixed, at the time of borrowing. However,
benefits may be affected by changing interest
rates, which are not easily predicted. It is com-
mon practice in benefit—cost analyses to assume
constant interest rates over time, for lack of any
better assumption.

Interest rates available to private investors or
borrowers may not be the same rates that are used
for analyzing public investment decisions. In an
economic evaluation of public-sector invest-
ments, the same relationships are used even
though government agencies are not generally
free to loan or borrow funds on private money
markets. In the case of public-sector investments,
the interest rate to be used in an economic anal-
ysis is a matter of public policy; it is the rate at
which the government is willing to forego current
benefits to its citizens in order to provide benefits
to those living in future time periods. It can be
viewed as the government’s estimate of the time
value of public monies or the marginal rate of
return to be achieved by public investments.

These definitions and concepts of engineering
economics are applicable to many of the prob-
lems faced in water resources planning and
management. Each of the equations above is
applicable to discrete alternatives whose decision
variables (investments over time) are known. The
equations are used to identify the best alternative
from a set of mutually exclusive alternatives
whose decision variable values are known. More
detailed discussions of the application of
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engineering economics are contained in numer-
ous texts on the subject. In the next section, we
introduce methods that can identify the best
alternative among those whose decision variable
values are not known. For example, engineering
economic methods can identify, for example, the
most cost-effective tank from among those whose
dimension values have been previously selected.
The optimization methods that follow can iden-
tify directly the values of the dimensions of most
cost-effective tank.

4.3 Nonlinear Optimization Models
and Solution Procedures

Constrained optimization involves finding the
values of decision variables given specified
relationships that have to be satisfied. Con-
strained optimization is also called mathematical
programming. Mathematical programming tech-
niques include calculus-based Lagrange multi-
pliers and various methods for solving linear and
nonlinear models including dynamic program-
ming, quadratic programming, fractional pro-
gramming, and geometric programming, to
mention a few. The applicability of each of these

as well as other constrained optimization proce-
dures is highly dependent on the mathematical
structure of the model that in turn is dependent
on the system being analyzed. Individuals tend to
construct models in a way that will allow them to
use a particular optimization technique they think
is best. Thus, it pays to be familiar with various
types of optimization methods since no one
method is best for all optimization problems.
Each has its strengths and limitations. The
remainder of this chapter introduces and illus-
trates the application of some of the most com-
mon constrained optimization techniques used in
water resources planning and management.
Consider a river from which diversions are
made to three water-consuming firms that belong
to the same corporation, as illustrated in Fig. 4.1.
Each firm makes a product. Water is needed in
the process of making that product, and is the
critical resource. The three firms can be denoted
by the index j = 1, 2, and 3 and their water al-
locations by x;. Assume the problem is to deter-
mine the allocations x; of water to each of three
firms (j = 1, 2, 3) that maximize the total net
benefits, Z/’ NB;(x;), obtained from all three
firms. The total amount of water available is
constrained or limited to a quantity of Q.

firm 1
producing p4

producing py

firm 3
producing p3

Fig. 4.1 Three water-using firms obtain water from a river. The amounts x; allocated to each firm j will depend on the

river flow Q
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ﬂlB1(X1) NBo (X2) NB3(X3)
[F [F dNB3 /d
/A/dNBQ Jdxo
X1* X2* X3*
—> X1 —> Xo —> X3 /

Fig. 4.2 Concave net benefit functions for three water users, j, and their slopes at allocations x;

Assume the net benefits, NB,(x;), derived from
water x; allocated to each firm j, are defined by

NB; (x1) = 6x; — x7 (4.9)

NB;(x;) = 7xy — 1.5x3 (4.10)
NB;(x3) = 8x3 — 0.5x3 (4.11)
These are concave functions exhibiting

decreasing marginal net benefits with increasing
allocations. These functions look like hills, as
illustrated in Fig. 4.2.

4.3.1 Solution Using Calculus

Calculus can be used to find the allocations that
maximize each user’s net benefits, simply by
finding where the slope or derivative of the net
benefit function for each firm equals zero. The
derivative, dNB(x;)/dx;, of the net benefit func-
tion for Firm 1 is (6 — 2x;) and hence the allo-
cation to Firm 1 that maximizes its net benefits
would be 6/2 or 3. The corresponding allocations
for Firms 2 and 3 are 2.33 and 8, respectively.
The total amount of water desired by all firms is
the sum of each firm’s desired allocation, or
13.33 flow units. However, suppose only 8§ units
of flow are available for all three firms and 2

units must remain in the river. Introducing this
constraint renders the previous solution infeasi-
ble. In this case we want to find the allocations
that maximize the total net benefits obtained from
all firms subject to having only 6 flow units
available for allocations. Using simple calculus
will not suffice.

43.2 Solution Using Hill Climbing
One approach for finding, at least approximately,
the particular allocations that maximize the total
net benefit derived from all firms in this example
is an incremental steepest-hill-climbing method.
This method divides the total available flow
0 into increments and allocates each successive
increment so as to get the maximum additional
net benefit from that incremental amount of
water. This procedure works in this example
because each of the net benefit functions is con-
cave; in other words, the marginal benefits
decrease as the allocation increases. This proce-
dure is illustrated by the flow diagram in Fig. 4.3.

Table 4.1 lists the results of applying the
procedure shown in Fig. 4.3 to the problem when
(a) only 8 and (b) only 20 flow units are avail-
able. Here a minimum river flow of 2 is required
and is to be satisfied, when possible, before any
allocations are made to the firms.

The hill-climbing method illustrated in
Fig. 4.3 and Table 4.1 assigns each incremental
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set initial
conditions
X1, X2,X3, =0
set Qmax, AQ allocate AQ
Q=0 to firm j having
max. marginal
\L net benefits
dNBj/dxj at xj:
Q=Q0+AQ |<K—— Xj = xj+ AQ
Q<R =

yes \// no

Fig. 4.3 Steepest hill-climbing approach for finding allocation of a flow Qu.x to the three firms, while meeting

minimum river flow requirements R

flow AQ to the use that yields the largest addi-
tional (marginal) net benefit. An allocation is
optimal for any total flow Q when the marginal
net benefits from each nonzero allocation are
equal, or as close to each other as possible given
the size of the increment AQ. In this example,
with a AQ of 1 and Q. of 8, it just happens that
the marginal net benefits associated with each
allocation are all equal (to 4). The smaller the
AQ, the more precise will be the optimal allo-
cations in each iteration, as shown in the lower
portion of Table 4.1, where AQ approaches 0.

Based on the allocations derived for various
values of available water Q, as shown in
Table 4.1, an allocation policy can be defined.
For this problem, the allocation policy that
maximizes total net benefits for any particular
value of Q is shown in Fig. 4.4.

This hill-climbing approach leads to optimal
allocations only if all of the net benefit functions
whose sum is being maximized are concave: that
is, the marginal net benefits decrease as the
allocation increases. Otherwise, only a local
optimum solution can be guaranteed. This is true

using any calculus-based optimization procedure
or algorithm.

433 Solution Using Lagrange
Multipliers
4.3.3.1 Approach

As an alternative to hill-climbing methods, con-
sider a calculus-based method involving
Lagrange multipliers. To illustrate this approach,
a slightly more complex water-allocation exam-
ple will be used. Assume that the benefit, Bj(x)),
each water-using firm receives is determined, in
part, by the quantity of product it produces and
the price per unit of the product that is charged.
As before, these products require water and water
is the limiting resource. The amount of product
produced, p;, by each firm j is dependent on the
amount of water, x;, allocated to it.

Let the function Pj(x;) represent the maximum
amount of product, p;, that can be produced by
firm j from an allocation of water x;. These are
called production functions. They are typically
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Table 4.1 Hill-climbing iterations for finding allocations that maximize total net benefit given a flow of Q,.x and a
required (minimum) streamflow of R = 2

Qmax=8 Qj=0; AQ=1; riverflowR=min {Q, 2}
iterationi Q;  allocations. R, x; marginal net new allocations total net
benefits benefits
Qj+AQ
7'3)(2 2] NB](X1)
R x4 x; x3 6-2x 8-x3 R x4 x x3
-3 02 02 0 O O 6 7 8 3 2 0 O | 7.5
4 3 2 0 O I 6 7 7 4 2 0 0 2 140
5 4 2 0 0 2 6 7 6 5 2 0 | 2 195
6 5 2 0 I 2 6 4 6 6 2 0 I 3 250
7 6 2 0 I 3 6 4 5 7 2 | | 3 300
8 7 2 | I 3 4 4 5 8 2 I I 4 345
9 8 2 | I 4 4 4 4 - = = = o oo
Qmax = 20; AQ —» 0; river flow R = min {Q, 2} selected values of Q
Q allocations. R, x j marginal net benefits total net
benefits
R X1 XZ X3 6'2X1 7-3 XZ 8- X3 Z] NB] (X-I)
0-2 0-2 0 0 0 [ 7 8 0.0
4 2 0 0.25 1.75 6.00 6.25 6.25 14.1
5 2 0.18 046 236 5.64 5.64 5.64 20.0
8 2 1.00 .00 4.00 4.00 4.00 4.00 34.5
10 2 1.55 1.36  5.09 291 291 291 41.4
15 2 291 227 782 0.18 0.18 0.18 49.1
20 6.67 3.00 233 8.00 0 0 0 49.2
Fig. 4.4 Water-allocation
policy that maximizes total
net benefits derived from _5 10 i
) =} irm 3
all three water-using firms g 8
i) 6 river R
A 4 / firm |
2 N
0 p——
0 2 4 6 8 10 12 14 16 18 20
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concave: as x; increases the slope, dP;(x;)/dx;, of
the production function, Pj(x;), decreases. For
this example, assume the production functions
for the three water-using firms are

Pi(x1) = 0.4(x))"? (4.12)

Ps(xy) = 0.5(x,)"* (4.13)

P3(x3) = 0.6(x3)"’ (4.14)

Next consider the cost of production. Assume
the associated cost of production can be expres-
sed by the following convex functions:

C =3(P(x))"? (4.15)
C, = 5(P2(x2))"? (4.16)
C3 = 6(P3(x3))"" (4.17)

Each firm produces a unique patented product,
and hence it can set and control the unit price of
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be demanded and sold. These are the demand
functions for that product. These unit price or
demand functions are shown in Fig. 4.5, where
the p; s are the amounts of each product pro-
duced. The vertical axis of each graph is the unit
price. To simplify the problem we are assuming
linear demand functions, but this assumption is
not a necessary condition.

The optimization problem is to find the water
allocations, the production levels, and the unit
prices that together maximize the total net benefit
obtained from all three firms. The water alloca-
tions plus the amount that must remain in the
river, R, cannot exceed the total amount of water
Q available.

Constructing and solving a model of this
problem for various values of Q, the total amount
of water available, will define the three allocation
policies as functions of Q. These policies can be
displayed as a graph, as in Fig. 4.4, showing the
three best allocations given any value of Q. This
of course assumes the firms can adjust to varying
allocations. In reality this may not be the case
(Chapter 9 examines this problem using more
realistic benefit functions that reflect the degree
to which firms can adapt to changing inputs over

its product. The lower the unit price, the greater ~time:)
the demand and thus the more each firm can sell. The model:
Each firm has determined the relationship o ]
between the unit price and the amount that will Maximize Net_benefit (4.18)
e 32 [ 32 [ 32 i
S 28 28 | 28 k
2o f 24 | 1 [
5 2 2 20 |
‘F 6T Iz 16 [ 28-2.5P,
12 k 2 F 20-1.5P5 2 E
8 | 12- P4 8 | 8 |
4r 4T 4r
0 0 0
—> Py —> Py —> Py

Fig. 4.5 Unit prices that will guarantee the sale of the specified amounts of products p; produced in each of the three
firms (linear functions are assumed in this example for simplicity)
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Subject to
Definitional constraints:

Net_benefit = Total_return — Total _cost
(4.19)

Total _return =(12 — py)p1 + (20 — 1.5p2)p2
+ (28 — 2.5p3)p3
(4.20)

Total_cost = 3([11)1'30 + 5(1?2)1'20 + 6(173)1'15
(4.21)

Production functions defining the relationship
between water allocations x; and production p;

p1 = 0.4(x))" (4.22)

P2 =0.5(x,)"" (4.23)

p3 = 0.6(x3)"” (4.24)
Water-allocation restriction

R4+x1+x4+x3=0 (4.25)

One can first solve this model for the values of
each p; that maximize the total net benefits,
assuming water is not a limiting constraint. This is
equivalent to finding each individual firm’s
maximum net benefits, assuming all the water that
is needed is available. Using calculus we can
equate the derivatives of the total net benefit
function with respect to each p; to 0 and solve
each of the resulting three independent equations:

Total Net_benefit = [(12 — p)p; + (20 — 1.5p2)p2
+ (28 = 2.5p3)p3] = [3(p1)"

+5(p2)1'20 +6(p3)1A15}
(4.26)

4 An Introduction to Optimization Models and Methods

Derivatives:

O(Net_benefit)/0p; =0
=12 -2p; — 1.3(3)p"?
(4.27)

O(Net_benefit)/Op, = 0
=20 —3ps — 1.2(5)p5?
(4.28)

O(Net_benefit) /0p; = 0
=28 — 5p3 — 1.15(6)p3 "
(4.29)

The result (rounded off) is p; = 3.2, p, = 4.0,
and p3 = 3.9 to be sold for unit prices of 8.77,
13.96, and 18.23, respectively, for a maximum
net revenue of 155.75. This would require water
allocations x; = 10.2, x, = 13.6, and x3 = 14.5,
totaling 38.3 flow units. Any amount of water
less than 38.3 will restrict the allocation to, and
hence the product production at, one or more of
the three firms.

If the total available amount of water is less
than that desired, constraint Eq. 4.25 can be
written as an equality, since all the water avail-
able, less any that must remain in the river, R,
will be allocated. If the available water supplies
are less than the desired 38.3 plus the required
streamflow R, then Egs. 4.22-4.25 need to be
added. These can be rewritten as equalities since
they will be binding. Equation 4.25 in this case
can always be an equality since any excess water
will be allocated to the river, R.

To consider values of Q that are less than the
desired 38.3 units, constraints 4.22—4.25 can be
included in the objective function, Eq. 4.26, once
the right-hand side has been subtracted from the
left-hand side so that they equal 0. We set this
function equal to L.
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L=1[(12 = p1)p1 + (20 — 1.5p2)ps + (28 — 2.5p3)p3]
= 30" 522+ 6(0) ]
S [pl - O.4(x1)0‘9] — [pz - 0.5(x2)°'8]
_ [p3 - 0.6(x3)°-7] — J4[R+x1 412413 — O]
(4.30)

Since each of the four constraint Egs. 4.22—
4.25 included in Eq. 4.30 equals zero, each can
be multiplied by a variable A; without changing
the value of Eq. 4.30, or equivalently, Eq. 4.26.
These unknown variables A; are called the
Lagrange multipliers of constraints i. The value
of each multiplier, 4;, is the marginal value of the
original objective function, Eq. 4.26, with
respect to a change in the value of the amount
produced, p, or in the case of constraint Eq. 4.25,
the amount of water available, Q. We will show
this shortly.

Differentiating Eq. 4.30 with respect to each
of the ten unknowns and setting the resulting
equations to O yields:

OL/Opy =0 =12 —2p; — 1.303)p"* — 4
(4.31)

OL/Ops =0 =20 — 3py — 1.2(5)p5% — 2,
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OL/dps = 0 =28 — 5p3 — 1.15(6)p3"° — 25

(4.33)

OL/Ox; =0 = 2,0.9(0.4)x; %" — %y (4.34)
OL/0xy = 0 = 7,0.8(0.5)x; %% — &y (4.35)
OL/0x3 = 0 = 730.7(0.6)x;°% — Ay (4.36)
OL/8iy =0 =p, —0.4(x)"’ (4.37)
OL/D)y =0 =py —0.5(x,)"* (4.38)
OL)923 = 0 = p3 — 0.6(x3)"’ (4.39)
OL/0}4 =0=R+x1+x+x3—Q (4.40)

These ten equations are the conditions neces-
sary for a solution that maximizes Eq. 4.30, or
equivalently 4.26. They can be solved to obtain
the values of the ten unknown variables. The
solutions to these equations for various values of
0, (found in this case using LINGO) are shown in
Table 4.2. (A free demo version of LINGO can be
obtained (downloaded) from www.LINDO.com.)
4.3.3.2 Meaning of Lagrange
Multiplier 4

(4.32) In this example, Eq. 4.30 is the objective func-
tion that is to be maximized. It is maximized or
Table 4.2 Solutions to Egs. 4.31-4.40
water allocations product lagrange multipliers
to firms productions
available | 2 3 | 2 3 marginal net benefits
Q-R X1 X X Pt P2 P3 Ao Ay Ay g
10 1.2 3.7 5. 046 144 1.88 80 92 110 28
20 4.2 73 85 146 245 2.68 47 55 66 |5
30 75 107 117 246 334 337 20 23 29 06
38 10.1 135 144 320 400 3.89 0.1 0.l 0.I 0.0
383 102 13.6 145 322 402 3091 0 0 0 0


http://www.LINDO.com

104 4

minimized by equating to zero each of its partial
derivatives with respect to each unknown vari-
able. Equation 4.30 consists of the original net
benefit function plus each constraint i multiplied
by a weight or multiplier 4;. This equation is
expressed in monetary units. The added con-
straints are expressed in other units: either the
quantity of product produced or the amount of
water available. Thus the units of the weights or
multipliers 4; associated with these constraints
are expressed in monetary units per constraint
units. In this example, the multipliers 1,, 15, and
A3 represent the change in the total net benefit
value of the objective function (Eq. 4.26) per
unit change in the products p;, p,, and p; pro-
duced. The multiplier 44 represents the change in
the total net benefit per unit change in the water
available for allocation, Q — R.

Note in Table 4.2 that as the quantity of
available water increases, the marginal net ben-
efits decrease. This is reflected in the values of
each of the multipliers, 4;. In other words, the net
revenue derived from a quantity of product pro-
duced at each of the three firms, and from the
quantity of water available, is a concave function
of those quantities, as illustrated in Fig. 4.2.

To review the general Lagrange multiplier
approach and derive the definition of the multi-
pliers, consider the general constrained opti-
mization problem containing n decision variables
x; and m constraint equations i.

Maximize (or minimize) F(X) (4.41)
subject to constraints
gX)=b i=1,2,3,....m, (4.42)

where X is the vector of all x;. The Lagrange
function L(X, 4) is formed by combining
Eq. 4.42, each equaling zero, with the objective
function of Eq. 4.41.

L(X,4) =F(X) - Z 2i(8i(X) — b;)  (4.43)
Solutions of the equations 9L/dx; = 0 for all

decision variables x; and 9L/d}; = 0 for all con-
straints g; are possible local optima.

An Introduction to Optimization Models and Methods

There is no guarantee that a global optimum
solution will be found using calculus-based
methods such as this one. Boundary conditions
need to be checked. Furthermore, since there is
no difference in the Lagrange multipliers proce-
dure for finding a minimum or a maximum
solution, one needs to check whether in fact a
maximum or minimum is being obtained. In this
example, since each net benefit function is con-
cave, a maximum will result.

The meaning of the values of the multipliers 4;
at the optimum solution can be derived by
manipulation of 9L/d\; = 0. Taking the partial
derivative of the Lagrange function, Eq. 4.43,
with respect to an unknown variable x; and set-
ting it to zero results in

OL/0x; =0 = OF /0x; — Y _ 7:0(gi(X))/0x;
(4.44)
Multiplying each term by 9x; yields

OF = Z)Lia(gi(x)) (4.45)

Dividing each term by 9b; associated with a
particular constraint, say k, defines the meaning
of Ak.

OF [0 = 70(2i(X))/0bx = 4 (4.46)

Equation 4.46 follows from the fact that
0(gi(X))/0b, equals 0 for constraints i # k and
equals 1 for the constraint i = k. The latter is true
since b; = g,(X) and thus 9(g(X)) = 9b,.

From Eq. 4.46, each multiplier ; is the mar-
ginal change in the original objective function F
(X) with respect to a change in the constant b;
associated with the constraint i. For nonlinear
problems, it is the slope of the objective function
plotted against the value of b;.

Readers can work out a similar proof if a slack
or surplus variable, S;, is included in inequality
constraints to make them equations. For a less-
than-or-equal constraint g;(X) < b; a squared
slack variable S? can be added to the left-hand
side to make it an equation g;(X) +S? = b;. Fora
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greater-than-or-equal constraint g(X) = b; a
squared surplus variable S? can be subtracted
from the left-hand side to make it an equation
gi(X) — $? = b;. These slack or surplus variables
are squared to ensure they are nonnegative, and
also to make them appear in the differential

equations.

OL/0S; = 0 = —=28;2; = SiA; (4.47)

Equation 4.47 shows that either the slack or
surplus variable, S, or the multiplier, 4, will
always be zero. If the value of the slack or sur-
plus variable S is nonzero, the constraint is
redundant. The optimal solution will not be
affected by the constraint. Small changes in the
values, b, of redundant constraints will not
change the optimal value of the objective func-
tion F(X). Conversely, if the constraint is bind-
ing, the value of the slack or surplus variable
S will be zero. The multiplier 4 can be nonzero if
the value of the function F(X) is sensitive to the
constraint value b.

The solution of the set of partial differential
Equations Egs. 4.47 often involves a trial-and-
error process, equating to zero a 4 or a S for each
inequality constraint and solving the remaining
equations, if possible. This tedious procedure,
along with the need to check boundary solutions
when nonnegativity conditions are imposed,
detracts from the utility of classical Lagrange
multiplier methods for solving all but relatively
simple water resources planning problems.

4.4 Dynamic Programming

The water-allocation problems in the previous
section assumed a net-benefit function for each
water-using firm. In those examples, these func-
tions were continuous and differentiable, a con-
venient attribute if methods based on calculus
(such as hill-climbing or Lagrange multipliers) are
to be used to find the best solution. In many
practical situations, these functions may not be so
continuous, or so conveniently concave for max-
imization or convex for minimization, making
calculus-based methods for their solution difficult.
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A possible solution method for constrained
optimization problems containing continuous
and/or discontinuous functions of any shape is
called discrete dynamic programming. Each
decision variable value can assume one of a set
of discrete values. For continuous valued objec-
tive functions, the solution derived from discrete
dynamic programming may therefore be only an
approximation of the best one. For all practical
purposes this is not a significant limitation,
especially if the intervals between the discrete
values of the decision variables are not too large
and if simulation modeling is used to refine the
solutions identified using dynamic programming.

Dynamic programming is an approach that
divides the original optimization problem, with all
of its variables, into a set of smaller optimization
problems, each of which needs to be solved before
the overall optimum solution to the original
problem can be identified. The water supply allo-
cation problem, for example, needs to be solved
for arange of water supplies available to each firm.
Once this is done the particular allocations that
maximize the total net benefit can be determined.

4.4.1 Dynamic Programming
Networks and Recursive

Equations

A network of nodes and links can represent each
discrete  dynamic  programming  problem.
Dynamic programming methods find the best
way to get to, or go from, any node in that net-
work. The nodes represent possible discrete
states of the system that can exist and the links
represent the decisions one could make to get
from one state (node) to another. Figure 4.6
illustrates a portion of such a network for the
three-firm allocation problem shown in Fig. 4.1.
In this case the total amount of water available,
O — R, to all three firms is 10.

Thus, dynamic programming models involve
states, stages, and decisions. The relationships
among states, stages, and decisions are repre-
sented by networks, such as that shown in
Fig. 4.6. The states of the system are the nodes
and the values of the states are the numbers in the
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Fig. 4.6 A network
representing some of the %
possible integer allocations
of water to three
water-consuming firms

j assuming 10 units of
water are available. The
circles or nodes represent
the discrete quantities of
water available to users not
yet allocated any water, and
the links represent feasible
allocation decisions x; to
the next firm j

firm 1

) )

firm 2 firm 3

nodes. Each node value in this example is the
quantity of water available to allocate to all
remaining firms, that is, to all connected links to
the right of the node. These state variable values
typically represent some existing condition either
before making, or after having made, a decision.
The stages of the system are the different com-
ponents (e.g., firms) or time periods. Links
between (or connecting) initial and final states
represent decisions. The links in this example
represent possible allocation decisions for each
of the three different firms. Each stage is a sep-
arate firm. Each state is an amount of water that
remains to be allocated in the remaining stages.

Each link connects two nodes, the left node
value indicating the state of a system before a
decision is made, and the right node value indi-
cating the state of a system after a decision is
made. In this case, the state of the system is the
amount of water available to allocate to the
remaining firms.

In the example shown in Fig. 4.6, the state
and decision variables are represented by integer
values—an admittedly fairly coarse discretiza-
tion. The total amount of water available, in
addition to the amount that must remain in the

river, is 10. Note from the first row of Table 4.2
the exact allocation solution is x; = 1.2,
X, = 3.7, and x; = 5.1. Normally, we would not
know this solution before solving for it using
dynamic programming, but since we do we can
reduce the complexity (number of nodes and
links) of the dynamic programming network so
that the repetitive process of finding the best
solution is clearer. Thus assume the range of x;
is limited to integer values from O to 2, the range
of x, is from 3 to 5, and the range of x3 is from 4
to 6. These range limits are imposed here just to
reduce the size of the network. In this case, these
assumptions will not affect or constrain the
optimal integer solution. If we did not make
these assumptions the network would have, after
the first column of one node, three columns of
11 nodes, one representing each integer value
from O to 10. Finer (noninteger) discretizations
would involve even more nodes and connecting
links.

The links of Fig. 4.6 represent the water allo-
cations. Note that the link allocations, the num-
bers on the links, cannot exceed the amount of
water available, that is, the number in the left
node of the link. The number in the right node is
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Fig. 4.7 Network as in
Fig. 4.6 representing
integer value allocations of
water to three
water-consuming firms.
The circles or nodes
represent the discrete
quantities of water
available, and the links
represent feasible allocation
decisions. The numbers on
the links indicate the net
benefits obtained from
these particular integer
allocation decisions

NB1(x1)

=
=
3
-

NB5 (x5) NB3(x3)

firm 2 firm 3

the quantity of water remaining after an allocation
has been made. The value in the right node, state
S;+1, at the beginning of stage j + 1, is equal to the
value in the left node, S;, less the amount of water,
x;, allocated to firm j as indicated on the link.
Hence, beginning with a quantity of water S; that
can be allocated to all three firms, after allocating
x1 to Firm 1 what remains is S,:

S] — X1 = S2 (448)
Allocating x, to Firm 2, leaves S;.
S2 — Xy = S3 (449)

Finally, allocating x; to Firm 3 leaves S;.

S3 — X3 = S4 (450)

Figure 4.6 shows the different values of each
of these states, S;, and decision variables x;
beginning with a quantity S; = O — R = 10. Our
task is to find the best path through the network,
beginning at the leftmost node having a state
value of 10. To do this we need to know the net

benefits we will get associated with all the links

(representing the allocation decisions we could
make) at each node (state) for each firm (stage).

Figure 4.7 shows the same network as in
Fig. 4.6; however the numbers on the links rep-
resent the net benefits obtained from the associ-
ated water allocations. For the three firms j = 1,
2, and 3, the net benefits, NB(x;), associated with
allocations x; are

NB; (x;) = maximum(12 — p;)p; — 3@1)1430
where p; <0.4(x;)"’

(4.51)

NB; (x,) = maximum(20 — 1.5p,)ps — 5(p2)"*°
where p; < O.S(xz)o'8
(4.52)

NBj3(x3) = maximum(28 — 2.5p3)p3; — 6(p3)“5

where p3 < 0.6()63)0'7

(4.53)

The discrete dynamic programming algorithm
or procedure is a systematic way to find the best
path through this network, or any other suitable
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network. What makes a network suitable for
dynamic programming is the fact that all the nodes
can be lined up in a sequence of vertical columns
and each link connects a node in one column to
another node in the next column of nodes. No link
passes over or through any other column(s) of
nodes. Links also do not connect nodes in the
same column. In addition, the contribution to the
overall objective value (in this case, the total net
benefits) associated with each discrete decision
(link) in any stage or for any firm is strictly a
function of the allocation of water to the firm. It is
not dependent on the allocation decisions associ-
ated with other stages (firms) in the network.

The main challenge in using discrete dynamic
programming to solve an optimization problem is
to structure the problem so that it fits this
dynamic programming network format. Perhaps
surprisingly, many water resources planning and
management problems do. But it takes practice to
become good at converting optimization prob-
lems to networks of states, stages, and decisions
suitable for solution by discrete dynamic pro-
gramming algorithms.

In this problem the overall objective is to

Maximize Z NB;(x;), (4.54)
J

where NB)(x;) is the net benefit associated with an
allocation of x; to firm j. Equations 4.51-4.53
define these net benefit functions. As before, the
index j represents the particular firm, and each
firm is a stage for this problem. Note that the index
or subscript used in the objective function often
represents an object (like a water-using firm) at a
place in space or a time period. These places or
time periods are called the stages of a dynamic
programming problem. Our task is to find the best
path from one stage to the next: in other words, the
best allocation decisions for all three firms.
Dynamic programming can be viewed as a
multistage decision-making process. Instead of
deciding all three allocations in one single opti-
mization procedure, like Lagrange multipliers,
the dynamic programming procedure divides the
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problem up into many optimization problems,
one for each possible discrete state (e.g., for each
node representing an amount of water available)
in each stage (e.g., for each firm). Given a par-
ticular state S; and stage j—that is, a particular
node in the network—what decision (link) x; will
result in the maximum total net benefits, desig-
nated as F(S), given this state S; for this and all
remaining stages or firms j,j + 1,j + 2 ... ? This
question must be answered for each node in the
network before one can find the overall best set
of decisions for each stage: in other words, the
best allocations to each firm (represented by the
best path through the network) in this example.

Dynamic programming networks can be
solved in two ways—beginning at the most right
column of nodes or states and moving from right
to left, called the backward-moving (but forward-
looking) algorithm, or beginning at the leftmost
node and moving from left to right, called the
forward-moving (but backward-looking) algo-
rithm. Both methods will find the best path
through the network. In some problems, how-
ever, only the backward-moving algorithm pro-
duces a useful solution. We will revisit this issue
when we get to reservoir operation where the
stages are time periods.

44.2 Backward-Moving Solution

Procedure

Consider the network in Fig. 4.7. Again, the
nodes represent the discrete states—water avail-
able to allocate to all remaining users. The links
represent particular discrete allocation decisions.
The numbers on the links are the net benefits
obtained from those allocations. We want to
proceed through the node-link network from the
state of 10 at the beginning of the first stage to the
end of the network in such a way as to maximize
total net benefits. But without looking at all
combinations of successive allocations we cannot
do this beginning at a state of 10. However, we
can find the best solution if we assume we have
already made the first two allocations and are at
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any of the nodes or states at the beginning of the
final, third, stage with only one allocation deci-
sion remaining. Clearly at each node representing
the water available to allocate to the third firm, the
best decision is to pick the allocation (link) hav-
ing the largest net benefits.

Denoting F5(S3) as the maximum net benefits
we can achieve from the remaining amount of
water Ss, then for each discrete value of S; we
can find the x3 that maximizes F3(S3). Those
shown in Fig. 4.7 include:

F5(7) = Maximum{NB3(x3)}
x3 <7, the total flow available.
4 <x3 <6, the allowable range of allocations
= Maximum{27.9,31.1,33.7} = 33.7 whenx; = 6

(4.55)
F3(6) = Maximum{NB3(x3)}
X3 S 6
4 S X3 S 6
= Maximum{27.9,31.1,33.7} = 33.7whenx; = 6
(4.56)
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F3(5) = Maximum{NB3(x3) }
x3<5
4<x3<6
= Maximum{27.9, 31.1} = 31.1 whenx; =5
(4.57)
F3(4) = Maximum{NB3(x3)}
x3<4
4<x3<6
= Maximum{27.9} = 27.9 when x3 = 4
(4.58)

These computations are shown on the network
in Fig. 4.8. Note that there are no benefits to be
obtained after the third allocation, so the decision
to be made for each node or state prior to allo-
cating water to Firm 3 is simply that which
maximizes the net benefits derived from that last
(third) allocation. In Fig. 4.8 the links repre-
senting the decisions or allocations that result in
the largest net benefits are shown with arrows.

Fo(10)=
18.6 +33.7

F1(10)=
3.7+49.7 0.0 18.6 +31.1

=53.4 =497 15.
3.7 —— : E
—> 18.
6.3

F2(8)=
15.7+31.1
=46.8

firm 1

firm 2

F3(7)

Fig. 4.8 Using the backward-moving dynamic program-
ming method for finding the maximum remaining net
benefits, F(S;), and optimal allocations (denoted by the
arrows on the links) for each state in Stage 3, then for
each state in Stage 2 and finally for the initial state in

Stage 1 to obtain the allocation policy that maximizes
total net benefits, F;(10). The minimum flow to remain in
the river, R, is in addition to the ten units available for
allocation and is not shown in this network
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Having computed the maximum net benefits,
F3(S3), associated with each initial state S3 for
Stage 3, we can now move backward (to the left) to
the discrete states S, at the beginning of the second
stage. Again, these states represent the quantity of
water available to allocate to Firms 2 and 3. Denote
F5(S,) as the maximum total net benefits obtained
from the two remaining allocations x, and x3 given
the quantity S, water available. The best x, depends
not only on the net benefits obtained from the
allocation x, but also on the maximum net benefits
obtainable after that, namely the just-calculated
F5(S5) associated with the state S5 that results from
the initial state S, and a decision x,. As defined in
Eq. 4.49, this final state S3 in Stage 2 obviously
equals S, — x,. Hence for those nodes at the
beginning of Stage 2 shown in Fig. 4.8:

F>(10) = Maximum{NB;(x2) + F3(S3 = 10 —x2) }
x <10
3<x <5
= Maximum{15.7 + 33.7,18.6
+33.7,21.14+31.1} = 52.3 when x, = 4

(4.59)

F>(9) = Maximum{NB, (x2) + F3(S3 =9 — x2) }
xn <9
3<x<5
= Maximum{15.7 + 33.7, 18.6
+31.1,21.14+27.9} = 49.7
when x, =4

(4.60)

F>(8) = Maximum{NB;(x;) + F3(S3 =8 — x2) }
X <8
3 <x; <5 (assume 4 instead of 5 since both
will not affect optimal solution)
= Maximum{15.7 + 31.1, 18.6
+279} =46.8 when x, =3
(4.61)

These maximum net benefit functions, F,(S,),
could be calculated for the remaining discrete
states from 7 to 0.
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Having computed the maximum net benefits
obtainable for each discrete state at the beginning
of Stage 2, that is, all the F»(S,) values, we can
move backward or left to the beginning of Stage
1. For this beginning stage there is only one state,
the state of 10 we are actually in before making
any allocations to any of the firms. In this case,
the maximum net benefits, F;(10), we can obtain
from given 10 units of water available, is

F1(10) = Maximum{NB (x;) + F>(S» = 10 — x1)}
x1 <10
0<x <2
= Maximum{0 + 52.3,3.7
+49.7,6.3+46.8} =534 when x; =1

(4.62)

The value of F;(10) in Eq. 4.62 is the same as
the value of Eq. 4.54. This value is the maximum
net benefits obtainable from allocating the
available 10 units of water. From Eq. 4.62 we
know that we will get a maximum of 53.4 net
benefits if we allocate 1 unit of water to Firm 1.
This leaves 9 units of water to allocate to the two
remaining firms. This is our optimal state at the
beginning of Stage 2. Given a state of 9 at the
beginning of Stage 2, we see from Eq. 4.60 that
we should allocate 4 units of water to Firm 2.
This leaves 5 units of water for Firm 3. Given a
state of 5 at the beginning of Stage 3, Eq. 4.57
tells us we should allocate all 5 units to Firm 3.
All this is illustrated in Fig. 4.8.

Compare this discrete solution with the con-
tinuous one defined by Lagrange multipliers as
shown in Table 4.2. The exact solution, to the
nearest tenth, is 1.2, 3.7, and 5.1 for x;, x,, and
X3, respectively. The solution just derived from
discrete dynamic programming that assumed
only integer allocation values is 1, 4, and 5,
respectively.

To summarize, a dynamic programming
model was developed for the following problem:

Maximize Net_benefit (4.63)
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Subject to

Net_benefit = Total_return — Total_cost
(4.64)

Total_return = (12 — py)p1 + (20 — 1.5p2)p,
+ (28 - 2.5])3)])3
(4.65)

Total_cost = 3(p1)1'30 + 5(p2)1.20 + 6@3)1'15

(4.66)

1 <0.4(x,)" (4.67)
p2<0.5(x2)"* (4.68)
p3 <0.6(x3)"7 (4.69)
X1 +x +x3<10 (4.70)

The discrete dynamic programming version of
this problem required discrete states S; repre-
senting the amount of water available to allocate
to firms j, j + 1, .... It required discrete alloca-
tions x;. Next it required the calculation of the
maximum net benefits, Fy(S;), that could be
obtained from all firms j, beginning with Firm 3,
and proceeding backward as indicated in
Eqgs. 4.71-4.73.

F3(S3) = maximum{NB3(x3)} overallx; < Ss,

for all discrete S5 values between 0 and 10

(4.71)

FZ(Sz) = maximum{NBz(xz) +F3(S3)}
overallx, <SandS3 =8, —x;, 0<85,<10
(4.72)

F] (S]) = maximum{NBl (X]) +F2(Sz)}
overallx; <S;and S, = S — x;and S; = 10

(4.73)
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The values of each NBj(x;) are obtained from
Egs. 4.51 to 4.53.

To solve for F(S;) and each optimal alloca-
tion x; we must first solve for all values of F3(S3).
Once these are known we can solve for all values
of F5(S,). Given these F,(S,) values, we can
solve for F(S;). Equations 4.71 need to be
solved before Eqgs. 4.72 can be solved, and
Egs. 4.72 need to be solved before Egs. 4.73 can
be solved. They need not be solved simultane-
ously, and they cannot be solved in reverse order.
These three equations are called recursive equa-
tions. They are defined for the backward-moving
dynamic programming solution procedure.

There is a correspondence between the non-
linear optimization model defined by Eqs. 4.63—
470 and the dynamic programming model
defined by the recursive Egs. 4.71-4.73. Note
that F3(S3) in Eq. 4.71 is the same as

F3 (S';) = Maximum NB3 ()C3) (474)
Subject to
X3 S S3, (475)

where NB3(x3) is defined in Eq. 4.53.
Similarly, F,(S,) in Eq. 4.72 is the same as

Fz(Sz) = Maximum NBz(Xz) + NB3 (X3)
(4.76)
Subject to
X2 +x3 <5, (4.77)

where NB,(x,) and NB3(x3) are defined in
Egs. 4.52 and 4.53.
Finally, F(S;) in Eq. 4.73 is the same as

F, (Sl) = Maximum NB; (Xl) + NBz(xZ) + NB}(X3)
(4.78)
Subject to
X1 +x+x3 <85 =10, (4.79)

where NB(x;), NB,(x,), and NB5(x3) are defined
in Eqs. 4.51-4.53.
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Alternatively, F3(S3) in Eq. 4.71 is the same as

F3(S3) = Maximum(28 — 2.5p3)ps — 6(p3)""”

(4.80)

Subject to
3 <0.6(x3)"” (4.81)
X3 S S’; (482)

Similarly, F,(S,) in Eq. 4.72 is the same as

F(S2) = Maximum(20 — 1.5p;)p2
+ (28 — 2.5p3)p3 — 5(p2)" ' —6(p3)"°

(4.83)
Subject to
P2 <0.5(x)"* (4.84)
p3 <0.6(x3)"7 (4.85)
X +x3 <S8 (4.86)

Finally, F(S;) in Eq. 4.73 is the same as

F1(S1) = Maximum(12 — p;)p;
+(20 — 1.5p2)ps + (28 — 2.5p3)ps

_ [3(p1)1‘30+5(p2)1‘20+6(p3)1‘15}

(4.87)
Subject to
0.9
p1<0.4(x) (4.88)
0.8
P2 <0.5(x2) (4.89)
0.7
P3 S 0.6(X3) (490)
xX14+x+x3<85 =10 (491)

The transition function of dynamic program-
ming defines the relationship between two
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successive states S; and S;,; and the decision x;.
In the above example, these transition functions
are defined by Eqgs. 4.48-4.50, or, in general
terms for all firms j, by

Sj+1 = Sj — X (492)

443 Forward-Moving Solution

Procedure

We have just described the backward-moving
dynamic programming algorithm. In that
approach at each node (state) in each stage we
calculated the best value of the objective function
that can be obtained from all further or remaining
decisions. Alternatively one can proceed for-
ward, that is, from left to right, through a
dynamic programming network. For the
forward-moving algorithm at each node we need
to calculate the best value of the objective
function that could be obtained from all past
decisions leading to that node or state. In other
words, we need to find how best to get to each
state S;,; at the end of each stage j.

Returning to the allocation example, define
fi(Sj+1) as the maximum net benefits from the
allocation of water to firms 1, 2, ..., j, given the
remaining water, state Sj, ;. For this example, we
begin the forward-moving, but backward-looking,
process by selecting each of the ending states in the
first stage j = 1 and finding the best way to have
arrived at (or to have achieved) those ending states.
Since in this example there is only one way to get
to each of those states, as shown in Fig. 4.7 or
Fig. 4.8 the allocation decisions, x;, given a value
for S, are obvious.

f1 (Sz) = maximum{NB1 ()Cl ) }

4.93
X1 = 10 — Sz ( )

Hence, f1(S>) is simply NB;(10 — S,). Once
the values for all f{(S,) are known for all discrete
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S5 between 0 and 10, move forward (to the right)
to the end of Stage 2 and find the best allocations
X, to have made given each final state S3.

f2(S3) = maximum{NB, (x2) +f1(S2) }
0<x<10—- 83
S =83+x

(4.94)

Once the values of all f>(S3) are known for all
discrete states S; between O and 10, move for-
ward to Stage 3 and find the best allocations x; to
have made given each final state S,.

f3(S4) = maximum{NB;(x3) +/2(S3)}
for all discrete S; between 0 and 10.
0<x3<10 — 84
S3 =84 +x3
(4.95)

Figure 4.9 illustrates a portion of the network
represented by Egs. 4.93-4.95, and the fi(S;,;)
values.

From Fig. 4.9, note the highest total net ben-
efits are obtained by ending with O remaining
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water at the end of Stage 3. The arrow tells us
that if we are to get to that state optimally, we
should allocate 5 units of water to Firm 3. Thus
we must begin Stage 3, or end Stage 2, with
10 — 5 = 5 units of water. To get to this state at
the end of Stage 2 we should allocate 4 units of
water to Firm 2. The arrow also tells us we
should have had 9 units of water available at the
end of Stage 1. Given this state of 9 at the end of
Stage 1, the arrow tells us we should allocate 1
unit of water to Firm 1. This is the same allo-
cation policy as obtained using the backward-
moving algorithm.

4.4.4 Numerical Solutions

The application of discrete dynamic program-
ming to most practical problems will usually
require writing some software. There are no
general dynamic programming computer pro-
grams available that will solve all dynamic pro-
gramming problems. Thus any user of dynamic
programming will need to write a computer
program to solve a particular problem unless they

Fig. 4.9 Using the
forward-moving dynamic
programming method for
finding the maximum
accumulated net benefits,
Jf{S; + 1), and optimal
allocations (denoted by the
arrows on the links) that
should have been made to
reach each ending state,
beginning with the ending
states in Stage 1, then for
each ending state in Stage 2
and finally for the ending
states in Stage 3

firm 1

firm 2 firm 3
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do it by hand. Most computer programs written
for solving specific dynamic programming
problems create and store the solutions of the
recursive equations (e.g., Eqs. 4.93-4.95) in
tables. Each stage is a separate table, as shown in
Tables 4.3, 4.4, and 4.5 for this example
water-allocation problem. These tables apply to
only a part of the entire problem, namely that part
of the network shown in Figs. 4.8 and 4.9. The
backward solution procedure is used.

Table 4.3 contains the solutions of Eqs. 4.55—
4.58 for the third stage. Table 4.4 contains the
solutions of Eqs. 4.59-4.61 for the second stage.
Table 4.5 contains the solution of Eq. 4.62 for
the first stage.

From Table 4.5 we see that, given 10 units of
water available, we will obtain 53.4 net benefits
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and to get this we should allocate 1 unit to Firm
1. This leaves 9 units of water for the remaining
two allocations. From Table 4.4 we see that for a
state of 9 units of water available we should
allocate 4 units to Firm 2. This leaves 5 units.
From Table 4.3 for a state of 5 units of water
available we see we should allocate all 5 of them
to Firm 3.

Performing these calculations for various
discrete total amounts of water available, say
from O to 38 in this example, will define an
allocation policy (such as the one shown in
Fig. 4.5 for a different allocation problem) for
situations when the total amount of water is less
than that desired by all the firms. This policy can
then be simulated using alternative time series of
available amounts of water, such as streamflows,

Table 4.3 Computing the values of F3(S3) and optimal allocations x3 for all states S5 in Stage 3

remaining net benefits NB3(S3)

decisions: x5
4 5

6

state S3 F3(S3)  x3
7 27.9 311 337 337 6
6 27.9 3.1 337 337 6
5 27.9 311 === 311 5
4 27.9 ——— ——— 27.9 4
Table 4.4 Computing the values of F,(S,) and optimal allocations x, for all states S, in Stage 2
remaining net benefits NB,(S;) + F3(S3=5;,-x,)
decisions: x,
state S, 3 4 5 F, (Sy) x)
10 15.7 + 33.7 18.6 + 33.7 21.1 + 31.1 523 4
9 15.7 + 33.7 18.6 + 31I.1 21.1 +27.9 49.7 4
8 15.7 + 31.1 18.6 + 27.9 - 46.8 3
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Table 4.5 Computing the values of F(S;) and optimal allocations x;, for all states Sy, in Stage 1

remaining net benefits NB 1(S4) + Fo(So= Sq-x4)

state S4

10 0+523

to obtain estimates of the time series (or statis-
tical measures of those time series) of net benefits
obtained by each firm, assuming the allocation
policy is followed over time.

445 Dimensionality

One of the limitations of dynamic programming
is handling multiple state variables. In our
water-allocation example, we had only one state
variable: the total amount of water available. We
could have enlarged this problem to include other
types of resources the firms require to make their
products. Each of these state variables would
need to be discretized. If, for example, only
m discrete values of each state variable are con-
sidered, for n different state variables (e.g., types
of resources) there are m" different combinations
of state variable values to consider at each stage.
As the number of state variables increases, the
number of discrete combinations of state variable
values increases exponentially. This is called
dynamic programming’s “curse of dimensional-
ity”. It has motivated many researchers to search
for ways of reducing the number of possible
discrete states required to find an optimal solu-
tion to large multistate-variable problems.

4.4.6 Principle of Optimality

The solution of dynamic programming models or
networks is based on a principal of optimality

ﬁ decisions: xzﬁ
0 1 2

3.7 +49.7

6.3 +46.8

(Bellman 1957). The backward-moving solution
algorithm is based on the principal that no matter
what the state and stage (i.e., the particular node
you are at), an optimal policy is one that pro-
ceeds forward from that node or state and stage
optimally. The forward-moving solution algo-
rithm is based on the principal that no matter
what the state and stage (i.e., the particular node
you are at), an optimal policy is one that has
arrived at that node or state and stage in an
optimal manner.

This “principle of optimality” is a very simple
concept but requires the formulation of a set of
recursive equations at each stage. It also requires
that either in the last stage (j=J) for a
backward-moving algorithm, or in the first stage
(G=1) for a forward-moving algorithm, the
future value functions, Fj,(S;+1), associated with
the ending state variable values, or past value
functions, fy(S;), associated with the beginning
state variable values, respectively, all equal some
known value. Usually that value is O but not
always. This condition is needed in order to
begin the process of solving each successive
recursive equation.

447 Additional Applications

Among the common dynamic programming
applications in water resources planning are
water allocations to multiple uses, infrastructure
capacity expansion, and reservoir operation.
The previous three-user water-allocation problem
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(Fig. 4.1) illustrates the first type of application.
The other two applications are presented below.

4.4.7.1 Capacity Expansion

How much infrastructure should be built, when
and why? Consider a municipality that must plan
for the future expansion of its water supply sys-
tem or some component of that system, such as a
reservoir, aqueduct, or treatment plant. The
capacity needed at the end of each future period
t has been estimated to be D,. The cost, C(s;, x;)
of adding capacity x; in each period ¢ is a function
of that added capacity as well as of the existing
capacity s; at the beginning of the period. The
planning problem is to find that time sequence of
capacity expansions that minimizes the present
value of total future costs while meeting the
predicted capacity demand requirements. This is
the usual capacity expansion problem.

This problem can be written as an optimiza-
tion model: The objective is to minimize the
present value of the total cost of capacity
expansion.

Minimize Z Ci(s1,%:), (4.96)
t

where C(s;, x,) is the present value of the cost of
capacity expansion x; in period ¢ given an initial
capacity of s;.

The constraints of this model define the mini-
mum required final capacity in each period ¢, or
equivalently the next period’s initial capacity, s, 1,
as a function of the known existing capacity s;
and each expansion x; up through period ¢.

Si41 =81+ ZXT for r=1,2,...,T

=1t

(4.97)

Alternatively these equations may be expres-
sed by a series of continuity relationships:

Siv1=8+x for t=12,..,T (4.98)
In this problem, the constraints must also

ensure that the actual capacity s, at the end of
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each future period 7 is no less than the capacity
required D, at the end of that period.

s;o1>D; for t=1,2,...,T (4.99)
There may also be constraints on the possible
expansions in each period defined by a set Q, of

feasible capacity additions in each period #:

x €Q, (4.100)
Figure 4.10 illustrates this type of capacity
expansion problem. The question is how much
capacity to add and when. It is a significant
problem for several reasons. One is that the cost
functions C(s;, x,) typically exhibit fixed costs
and economies of scale, as illustrated in Fig. 4.11.
Each time any capacity is added there are fixed as
well as variable costs incurred. Fixed and variable
costs that show economies of scale (decreasing
average costs associated with increasing capacity
additions) motivate the addition of excess
capacity, capacity not needed immediately but
expected to be needed in the future to meet an
increased demand for additional capacity.

The problem is also important because any
estimates made today of future demands, costs
and interest rates are likely to be wrong. The
future is uncertain. Its uncertainties increase the
further the future. Capacity expansion planners
need to consider the future if their plans are to be
cost-effective and not myopic from assuming

demand & possible capacity additions

capacity

—>»> time

Fig. 410 A demand projection (solid blue line) and a
possible capacity expansion schedule (red line) for
meeting that projected demand over time
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—>> cost

Co

—>> added capacity

Fig. 4.11 Typical cost function for additional capacity
given an existing capacity. The cost function shows the
fixed costs, Cy, required if additional capacity is to be
added, and the economies of scale associated with the
concave portion of the cost function

there is no future. Just how far into the future do
they need to look? And what about the uncer-
tainty in all future costs, demands, and interest
rate estimates? These questions will be addressed
after showing how the problem can be solved for
any fixed-planning horizon and estimates of
future demands, interest rates, and costs.

The constrained optimization model defined
by Eqgs. 4.96-4.100 can be restructured as a
multistage decision-making process and solved
using either a forward or backward-moving dis-
crete dynamic programming solution procedure.
The stages of the model will be the time periods
t. The states will be either the capacity s,,; at the
end of a stage or period ¢ if a forward-moving
solution procedure is adopted, or the capacity s,
at the beginning of a stage or period ¢ if a
backward-moving solution procedure is used.

A network of possible discrete capacity states
and decisions can be superimposed onto the
demand projection of Fig. 4.9, as shown in
Fig. 4.12. The solid blue circles in Fig. 4.12
represent possible discrete states, S;, of the sys-
tem, the amounts of additional capacity existing
at the end of each period # — 1 or equivalently at
the beginning of period 7.

Consider first a forward-moving dynamic
programming algorithm. To implement this,
define f(s,,1) as the minimum cost of achieving a
capacity s, at the end of period ¢. Since at the
beginning of the first period ¢ = 1, the accumu-
lated least cost is 0, fo(sq) = 0.
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capacity additions

—>»> demand & possible

t=1 2 3 4 5
—> time

Fig. 4.12 Network of discrete capacity expansion deci-
sions (links) that meet the projected demand

Hence, for each final discrete state s, in stage
t = 1 ranging from D, to the maximum demand
D7, define

fi(s2) = min{C|(s1,x;)} in which the discrete x,
=sands; =0
(4.101)

Moving to stage ¢ = 2, for the final discrete
states s3 ranging from D, to Dr,

fa(s3) = min{Ca(s2,x2) +fi(s2)}
over all discrete x; between 0 (4.102)
and §3 — D1 andsz =853 — X2
Moving to stage ¢ = 3, for the final discrete
states s4 ranging from D5 to Dy,

f3(s4) =min{C3(s3,x3) +f2(s3)}
over all discrete xzbetween 0
and sy, — D, and sy = s4 — X3
(4.103)

In general for all stages ¢ between the first and
last:

fi(si 1) = min{C;(s;, x;) +fi—1(s:)}
over all discrete x; between 0

ands; | — D;_yands; = 5,41 — X,

(4.104)

For the last stage ¢t = T and for the final dis-
crete state s7.; = Dr,



118 4

Jr(sr4+1) = min{Cr(sr,x7) +fr-1(s7)}
over all discrete xr
between 0 and Dy — Dr_;
where s7 = St41 — X1
(4.105)

The value of f{(s7,1) is the minimum present
value of the total cost of meeting the demand for
T time periods. To identify the sequence of
capacity expansion decisions that results in this
minimum present value of the total cost requires
backtracking to collect the set of best decisions x;
for all stages . A numerical example will illus-
trate this.

A numerical example
Consider the five-period capacity expansion
problem shown in Fig. 4.12. Figure 4.13 is the

An Introduction to Optimization Models and Methods

same network with the present value of the ex-
pansion costs on each link. The values of the
states, the existing capacities, represented by the
nodes, are shown on the left vertical axis. The
capacity expansion problem is solved on
Fig. 4.14 using the forward-moving algorithm.

From the forward-moving solution to the
dynamic programming problem shown in
Fig. 4.14, the present value of the cost of the
optimal capacity expansion schedule is 23 units
of money. Backtracking (moving left against the
arrows) from the farthest right node, this sched-
ule adds 10 units of capacity in period ¢ = 1, and
15 units of capacity in period ¢ = 3.

Next consider the backward-moving algo-
rithm applied to this capacity expansion problem.
The general recursive equation for a
backward-moving solution is

x| £ 0 0
[v]
o
g /_ /
3 : ¢
o
20 {\ 040/
15
10
5
1 L 1 1 J
t =1 2 4 5
—> time

Fig. 4.13 A discrete capacity expansion network show-
ing the present value of the expansion costs associated
with each feasible expansion decision. Finding the best

path through the network can be done using forward or
backward-moving discrete dynamic programming
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Fig. 4.14 A capacity-expansion example, showing the
results of a forward-moving dynamic programming
algorithm. The numbers next to the nodes are the

Fi(s,) = minimum{C,(s;,x,) + Fy4+1(s,+1)}
over all discrete x, from D, — s, to Dy — s, ,

for all discrete states s, from D,_; to Dy

(4.106)

where Fr,.1(Dy) =0 and as before each cost
function is the discounted cost.

Once again, as shown in Fig. 4.14, the mini-
mum total present value cost is 23 if 10 units of
additional capacity are added in period # = 1 and
15 in period 7 = 3.

Now consider the question of the uncertainty
of future demands, D,, discounted costs, C,(s;, X;),
as well as to the fact that the planning horizon
T is only 5 time periods. Of importance is just
how these uncertainties and finite planning
horizon affect our decisions. While the model

minimum cost to have reached that particular state at
the end of the particular time period ¢

gives us a time series of future capacity expan-
sion decisions for the next 5 time periods, what is
important to decision-makers is what additional
capacity to add in the current period, i.e., now,
not what capacity to add in future periods. Does
the uncertainty of future demands and costs and
the 5-period planning horizon affect this first
decision, x;? This is the question to ask. If the
answer is no, then one can place some confidence
in the value of x,. If the answer is yes, then more
study may be warranted to determine which
demand and cost scenario to assume, or, if
applicable, how far into the future to extend the
planning horizon.

Future capacity expansion decisions in time
periods 2, 3, and so on can be based on updated
information and analyses carried out closer to the
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Fig. 4.15 A capacity-expansion example, showing the
results of a backward-moving dynamic programming
algorithm. The numbers next to the nodes are the

time those decisions are to be made. At those
times, the forecast demands and economic cost
estimates can be updated and the planning hori-
zon extended, as necessary, to a period that again
does not affect the immediate decision. Note that
in the example problem shown in Figs. 4.14 and
4.15, the use of 4 periods instead of 5 would have
resulted in the same first-period decision. There
is no need to extend the analysis to 6 or more
periods.

To summarize: What 1is important to
decision-makers is what additional capacity to
add now. While the current period’s capacity
addition should be based on the best estimates of
future costs, interest rates and demands, once a
solution is obtained for the capacity expansion
required for this and all future periods up to some

minimum remaining cost to have the particular capacity
required at the end of the planning horizon given the
existing capacity of the state

distant time horizon, one can then ignore all but
that first decision, x;: that is, what to add now.
Then just before the beginning of the second
period, the forecasting and analysis can be
redone with updated data to obtain an updated
solution for what if any capacity to add in period
2, and so on into the future. Thus, these
sequential decision making dynamic program-
ming models can be designed to be used in a
sequential decision-making process.

4.4.7.2 Reservoir Operation

Reservoir operators need to know how much
water to release and when. Reservoirs designed to
meet demands for water supplies, recreation,
hydropower, the environment and/or flood con-
trol need to be operated in ways that meet those
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demands in a reliable and effective manner. Since
future inflows or storage volumes are uncertain,
the challenge, of course, is to determine the best
reservoir release or discharge for a variety of
possible inflows and storage conditions that could
exist or happen in each time period t in the future.

Reservoir release policies are often defined in
the form of what are called “rule curves.” Fig-
ure 4.17 illustrates a rule curve for a single
reservoir on the Columbia River in the north-
western United States. It combines components
of two basic types of release rules. In both of
these, the year is divided into various discrete
within-year time periods. There is a specified
release for each value of storage in each
within-year time period. Usually higher storage
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zones are associated with higher reservoir relea-
ses. If the actual storage is relatively low, then
less water is usually released so as to hedge
against a continuing water shortage or drought.

Release rules may also specify the desired
storage level for the time of year. The operator is
to release water as necessary to achieve these
target storage levels. Maximum and minimum
release constraints might also be specified that
may affect how quickly the target storage levels
can be met. Some rule curves define multiple
target storage levels depending on hydrological
(e.g., snow pack) conditions in the upstream
watershed, or on the forecast climate conditions
as affected by ENSO cycles, solar geomagnetic
activity, ocean currents and the like.

103 acre feet of storage

feet elevation

6000
full pool if possible full pool if possible
<> ¢ 3 control for
5000 |- 1300 CFS max for Stl. Hd. fishing winter Stl. Hd. fishing
and goose nesting
4000 |- max pool 1600'
i 1600
required for flood control
3000 -
°© ©  Qisso
additional FC requirement depends on forecast
2000 [ 1500
min pool 1445 (winter)
v 1450
1000 |-
0 Aug Sep Oct Nov Dec Jan Feb Mrt  Apr May Jun Jul
operating curve for power
O minimum pool for boat access and campsite use during recreation season

Fig. 4.16 An example reservoir rule curve specifying
the storage targets and some of the release constraints,
given the particular current storage volume and time of
year. The release constraints also include the minimum

and maximum release rates and the maximum down-
stream channel rate of flow and depth changes that can
occur in each month



122

4 An Introduction to Optimization Models and Methods

Reservoir release rule curves for a year, such
as that shown in Fig. 4.16, define a policy that
does not vary from one year to the next. The
actual releases will vary, however, depending on
the inflows and storage volumes that actually
occur. The releases are often specified indepen-
dently of future inflow forecasts. They are typi-
cally based only on existing storage volumes and
within-year periods—the two axes of Fig. 4.16.

Release rules are typically derived from trial
and error simulations. To begin these simulations

it is useful to have at least an approximate idea of
the expected impact of different alternative poli-
cies on various system performance measures or
objectives. Policy objectives could be the maxi-
mization of expected annual net benefits from
downstream releases, reservoir storage volumes,
hydroelectric energy and flood control, or the
minimization of deviations from particular
release, storage volume, hydroelectric energy or
flood flow targets or target ranges. Discrete
dynamic programming can be used to obtain
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Fig. 4.17 Network representation of the four-season
reservoir release problem. Given any initial storage
volume S, at the beginning of a season #, and an expected

inflow of Q, during season f, the links indicate the
possible release decisions corresponding to those in
Table 4.7
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initial estimates of reservoir-operating policies
that meet these and other objectives. The results
of discrete dynamic programming can be
expressed in the form shown in Fig. 4.17.

A numerical example

As a simple example, consider a reservoir having
an active storage capacity of 20 million cubic
meters, or for that matter any specified volume
units. The active storage volume in the reservoir
can vary between 0 and 20. To use discrete
dynamic programming, this range of possible
storage volumes must be divided into a set of
discrete values. These will be the discrete state
variable values. In this example let the range of
storage volumes be divided into intervals of 5
storage volume units. Hence, the initial storage
volume, S, can assume values of 0, 5, 10, 15, and
20 for all periods ?.

For each period t, let O, be the mean inflow,
L(S,, S;;1) the evaporation and seepage losses
that depend on the initial and final storage vol-
umes in the reservoir, and R, the release or dis-
charge from the reservoir. Each variable is
expressed as volume units for the period 7.

Storage volume continuity requires that in
each period ¢ the initial active storage volume, S,
plus the inflow, Q,, less the losses, LS, S/1),
and release, R, equals the final storage, or
equivalently the initial storage, S,.;, in the fol-
lowing period ¢ + 1. Hence

S;+0,— R, — L(S;,S;+1) = S, 11 foreach period z.
(4.107)

To satisfy the requirement (imposed for con-
venience in this example) that each storage vol-
ume variable be a discrete value over the range
from O to 20 in units of 5, the releases, R,, must
be such that when Q, — R, — L(S,, S,,1) is added
to S, the resulting value of S, is one of the five
discrete numbers between 0 and 20.

Assume four within-year periods # in each year
(kept small for this illustrative example). In these
four seasons assume the mean inflows, Q,, are 24,
12, 6, and 18, respectively. Table 4.6 defines the
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evaporation and seepage losses based on different
discrete combinations of initial and final storage
volumes for each within-year period 7.

Rounding these losses to the nearest integer
value, Table 4.7 shows the net releases associ-
ated with initial and final storage volumes. They
are computed using Eq. 4.107. The information
in Table 4.7 allows us to draw a network repre-
senting each of the discrete storage volume states
(the nodes), and each of the feasible releases (the
links). This network for the four seasons ¢ in the
year is illustrated in Fig. 4.17.

This reservoir-operating problem is a multi-
stage decision-making problem. As Fig. 4.17
illustrates, at the beginning of any season ¢, the
storage volume can be in any of the five discrete
states. Given the state, a release decision is to be
made. This release will depend on the state: the
initial storage volume and the mean inflow, as
well as the losses that may be estimated based on
the initial and final storage volumes, as defined in
Table 4.6. The release will also depend on what
is to be accomplished—that is, the objectives to
be satisfied.

For this example, assume there are various
targets that water users would like to achieve.
Downstream water users want reservoir operators
to meet their flow targets. Individuals who use
the lake for recreation want the reservoir opera-
tors to meet storage volume or storage level
targets. Finally, individuals living on the down-
stream floodplain want the reservoir operators to
provide storage capacity for flood protection.
Table 4.8 identifies these different targets that are
to be met, if possible, for the duration of each
season .

Clearly, it will not be possible to meet all
these storage volume and release targets in all
four seasons, given inflows of 24, 12, 6, and 18,
respectively. Hence, the objective in this example
will be to do the best one can: to minimize a
weighted sum of squared deviations from each of
these targets. The weights reflect the relative
importance of meeting each target in each season
t. Target deviations are squared to reflect the fact
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Table 4.6 Evaporation and seepage losses based on initial and final storage volumes for example reservoir-operating
problem
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Table 4.7 Discrete releases associated with initial and final storage volumes for example reservoir-operating problem
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Table 4.8 Storage volume and release targets for the example reservoir operation problem

period or storage targets release target
season t TSRy, TSFy TRt

1 15 flood control =210

2 20 recreation =215

3 20 recreation =20

4 =215

that the marginal “losses” associated with devi-
ations increase with increasing deviations. Small
deviations are not as serious as larger deviations,
and it is better to have numerous small deviations
rather than a few larger ones.

During the recreation season (periods 2 and 3),
deviations below or above the recreation storage
lake volume targets are damaging. During the
flood season (period 1), any storage volume in
excess of the flood control storage targets of 15
reduces the flood storage capacity. Deviations
below that flood control target are not penalized.
Flood control and recreation storage targets dur-
ing each season ¢ apply throughout the season,
thus they apply to the initial storage S, as well as
to the final storage S,,, in appropriate periods .

The objective is to minimize the sum of total
weighted squared deviations, TSD,, over all
seasons ¢ from now on into the future:

Minimize »_TSD,, (4.108)
t

where

TSD, = ws, (TS = 5+ (TS = S;41)’]

+ Wi, [(Es,)2 + (ES,+ 1)2} +wr, [DR7]
(4.109)

In the above equation, when ¢ =4, the last
period of the year, the following period  + 1 = 1,
the first period in the following year. Each ES, is
the storage volume in excess of the flood storage
target volume, TF. Each DR, is the difference
between the actual release, R, and the target
release, TR,, when the release is less than the target.

The excess storage, ES,, above the flood target
storage TF at the beginning of each season ¢ can
be defined by the constraint:

S; <TF+ES; for periods ¢ =1 and 2.

(4.110)

The deficit release, DR,, during period ¢ can
be defined by the constraint:
R, >TR; — DR;

for all periodsz.  (4.111)

The first component of the right side of
Eq. 4.109 defines the weighted squared devia-
tions from a recreation storage target, TS, at the
beginning and end of season ¢. In this example
the recreation season is during periods 2 and 3.
The weights, ws,, associated with the recreation
component of the objective are 1 in periods 2 and
3. In periods 1 and 4 the weights, ws,, are 0.

The second component of Eq. 4.109 is for
flood control. It defines the weighted squared
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deviations associated with storage volumes in
excess of the flood control target volume, TF, at
the beginning and end of the flood season, period
t = 1. In this example, the weights, wf,, are 1 for
period 1 and O for periods 2, 3, and 4. Note the
conflict between flood control and recreation at
the end of period 1 or equivalently at the
beginning of period 2.

Finally, the last component of Eq. 4.109
defines the weighted squared deficit deviations
from a release target, TR,, In this example all
release weights, wr, equal 1.

Associated with each link in Fig. 4.17 is the
release, R,, as defined in Table 4.7. Also associ-
ated with each link is the sum of weighted
squared deviations, TSD,, that result from the
particular initial and final storage volumes and the
storage volume and release targets identified in
Table 4.8. They are computed using Eq. 4.109,
with the releases defined in Table 4.7 and targets
defined in Table 4.8, for each feasible combina-
tion of initial and final storage volumes, S, and
S:+1, for each of the four seasons or periods in a
year. These computed weighted squared devia-
tions for each link are shown in Table 4.9.

The goal in this example problem is to find the
path through a multiyear network—each year of
which is as shown in Fig. 4.17—that minimizes
the sum of the squared deviations associated with
each of the path’s links. Again, each link’s
weighted squared deviations are given in
Table 4.9. Of interest is the best path into the
future from any of the nodes or states (discrete
storage volumes) that the system could be in at
the beginning of any season f.

These paths can be found using the
backward-moving solution procedure of discrete
dynamic programming. This procedure begins at
any arbitrarily selected time period or season
when the reservoir presumably produces no fur-
ther benefits to anyone (and it does not matter
when that time is—just pick any time) and pro-
ceeds backward, from right to left one stage (i.e.,
one time period) at a time, toward the present. At
each node (representing a discrete storage
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volume S, and inflow Q,), we can calculate the
release or final storage volume in that period that
minimizes the remaining sum of weighted
squared deviations for all remaining seasons.
Denote this minimum sum of weighted squared
deviations for all n remaining seasons 7 as
F?(S;, Q). This value is dependent on the state
(S;, O,), and stage, f, and the number n of
remaining seasons. It is not a function of the
decision R, or S,,;.

This minimum sum of weighted squared
deviations for all #» remaining seasons ¢ is equal
to

F}(S;,Q;) = min Y~ TSD;(S;,R;, S; 4 1)

t=1.n
over all feasible values of R;,
(4.112)

where

St+1 :St+Qz_R[_Lz(S[,S[+1) (4113)

and
S, <K, the capacity of the reservoir (4.114)

The policy we want to derive is called a
steady-state policy. Such a policy assumes the
reservoir will be operating for a relatively long
time with the same objectives and a repeatable
hydrologic time series of seasonal inputs. We can
find this steady-state policy by first assuming that
at some time all future benefits, losses or penal-
ties, F; (S, Q;), will be 0.

We can begin in that last season ¢ of reservoir
operation and work backwards toward the pre-
sent, moving left through the network one season
t at a time. We can continue for multiple years
until the annual policy begins repeating itself
each year. In other words, when the optimal R,
associated with a particular state (S,, Q,) is the
same in two or more successive years, and this
applies for all states (S,, Q,) in each season ¢, a
steady-state policy has probably been obtained.
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Table 4.9 Total sum of squared deviations, TSD,, associated with initial and final storage volumes

These are calculated using Eqs. 4.109-4.111
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(A more definitive test of whether or not a
steady-state policy has been reached will be
discussed later.) A steady-state policy will occur
if the inflows, Q,, and objectives, TSD, (S, R,,
S:+1), remain the same for specific within-year
periods from year to year. This steady-state pol-
icy is independent of the assumption that the
operation will end at some point.

To find the steady-state operating policy for
this example problem, assume the operation ends
in some distant year at the end of season 4 (the
right-hand side nodes in Fig. 4.17). At the end of
this season the number of remaining seasons, n,
equals 0. The values of the remaining minimum
sums of weighted squared deviations, F, (S, O;)
associated with each state (S;, Q,), i.e., each node,
equal 0. Since for this problem there is no future.
Now we can begin the process of finding the best
releases R, in each successive season f, moving
backward to the beginning of stage ¢ = 4, then
stage t = 3, then to # = 2, and then to = 1, and
then to ¢ = 4 of the preceding year, and so on,
each move to the left increasing the number of
remaining seasons n by one.

At each stage, or season f, for each discrete
state (S;, Q,) we can compute the release R, or
equivalently the final storage volume S, that
minimizes
F! (S, Q;) = Minimum{TSD,(S;, R, S;+1)

+ F (Si1, Q1) forall 0< S, <20
(4.115)

The decision variable can be either the release,

R,, or the final storage volume, S,,;. If the deci-

sion variable is the release, then the constraints
on that release R, are

R <S;+0r — LS, S 41) (4.116)

R/ >S4+ 0 — Li(S;,S;+1) — 20 (the capacity)
(4.117)

and

St+l :St+Qz_Rz—Lz(St7St+l) (4~118)
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If the decision variable is the final storage
volume, S;,;, the constraints on that final storage
volume are

0<8,4+1<20 (4.119)
St+1 <S8+ 0 _Lt(StaStJrl) (4-120)

and
R =840 —Si+1—L(S,S+1) (4121)

Note that if the decision variable is S,,; in
season t, this decision becomes the state variable
in season ¢ + 1. In both cases, the storage vol-
umes in each season are limited to discrete values
0, 5, 10, 15, and 20.

Tables 4.10,4.11,4.12,4.13, 4.14, 4.15, 4.16,
4.17, 4.18 and 4.19 show the values obtained
from solving the recursive equations for 10 suc-
cessive seasons or stages (2.5 years). Each table
represents a stage or season f, beginning with
Table 4.10 at ¢ = 4 and the number of remaining
seasons n =1. The data in each table are
obtained from Tables 4.7 and 4.9. The last two
columns of each table represent the best release
and final storage volume decision(s) associated
with the state (initial storage volume and inflow).

Note that the policy defining the release or
final storage for each discrete initial storage
volume in season ¢ = 3 in Table 4.12 is the same
as in Table 4.16, and similarly for season # = 4 in
Tables 4.13 and 4.17, and for season =1 in
Tables 4.14 and 4.18, and finally for season # = 2
in Tables 4.15 and 4.19. The policy differs over
each state, and over each different season, but not
from year to year for any specified state and
season. This indicates we have reached a
steady-state policy. If we kept on computing the
release and final storage policies for preceding
seasons, we would get the same policy as that
found for the same season in the following year.
The policy is dependent on the state—the initial
storage volume in this case—and on the season ¢,
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Table 4.10 Calculation of minimum squared deviations associated with various discrete storage states in season ¢ = 4
with only n = 1 season remaining for reservoir operation

Table 4.11 Calculation of minimum squared deviations associated with various discrete storage states in season # = 3
with n = 2 seasons remaining for reservoir operation
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Table 4.12 Calculation of minimum squared deviations associated with various discrete storage states in season 7 = 2
with n = 3 seasons remaining for reservoir operation

period t = 2 n=3 Q=12
F,3(S,,Q,) = min {TSD,(S,, Ry, S3) + F3(S5,Q;)}

I TSD, + F32(S3, Q3)

initial

storage final storage S3 F)3 R, S3
S, 0 5 10 15 20 (S5, Q,)

0 809+996 689+675 696+425 - - 1121 | 10
5 625+996 466+675 406+425 446+225 - 671 | 15
10 500+996 325+675 216+425 206+225 296+136 431 6 15
15 425+996 250+675 125+425 66+225 125+136 261 5 20
20 400+996 225+675 100+425 25+225 25+136 161 10 20

Table 4.13 Calculation of minimum squared deviations associated with various discrete storage states in season ¢ = 1
with n = 4 seasons remaining for reservoir operation

period t = 1 n=4 Q1=24
F#(S;, Q) = min {TSD,(S;, Ry, S ) + F3(S,, Q,)}

L TSDy + F)3 (S, Q))

initial

storage final storage S, F R1 S,
Sq 0 5 10 15 20 (S1 , Q4 )

0 0+1121 0+671 0+431 4+261 74+161 235 3 20
5 0+1121  0+671 0+431 0+261 29+16l 190 8 20
10 0+1121 0+671 0+431 0+261 25+16l 186 13 20
15 0+1121  0+671 0+431 0+261 25+16l 186 18 20

20 25+ 1121  25+671 25+431 25+261 50+16l 211 23 20
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Table 4.14 Calculation of minimum squared deviations associated with various discrete storage states in season 7 = 4
with n = 5 seasons remaining for reservoir operation

period t = 4 n=5 Q,=18
F,5(S,, Q) = min {TSD,(S,, Ry, S1) + F{*(S;,Q)}

_ TSD4 + F1*(S1, Q1)

initial

storage final storage S F45 R4 S4
S4 0 5 10 15 20 (S4.Qy4)

0 0+235 4+190 49+186 [44+186 - 194 13 5
5 0+235 0+190 4+186 49+186 144+211 190 13-18 5-10
10 0+235 0+190 0+186 4+186 64+211 186 18 10
15 0+235 0+190 0+186 0+186 9+211 186 17-23 10-15
20 0+235 0+190 0+186 0+186 0+211 186  22-27 10-15

Table 4.15 Calculation of minimum squared deviations associated with various discrete storage states in season 7 = 3
with n = 6 seasons remaining for reservoir operation

periodt = 3 n=6 Q3;=6
F;6(S3,Q;) = min {TSD;(S;,R;, S, ) + F,> (S,,Q,)}

- TSD3 + F4”(S4, Q4)

initial

storage final storage S4 F36 R; S4
S3 0 5 10 15 20 (S3,Q3)

0 996+194 1025+190 - - - 1190 6 0
5 725+194 675+190 725+186 - - 865 5 5
10 525+194 425+190 425+186 525+186 - 611 5 10
15 425+194 275+190 225+186 306+ 186 - 411 10 10

20 400+194 225+190 136+186 146+186 256+186 322 14 10
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Table 4.16 Calculation of minimum squared deviations associated with various discrete storage states in season 7 = 2
with n = 7 seasons remaining for reservoir operation

period t = 2 n=17 Q=12
F,7(S,,Q,) = min {TSD,(S,,R,, S3) + F;® (S5, Q3)}

L TSD, + F¥(S3, Q3)

initial

storage final storage S3 7 R, S3
S, 0 5 10 15 20 (52, Qz)

0 809+1190 689+865 696+611 - - 1307 | 10
5 625+1190 466+865 406+6I11 446+411 - 857 | 15
10 500+1190 325+865 2l6+611 206+411 296+322 617 6 15

15 425+1190 250+865 125+611 66+411 125+322 447 5 20
20 400+ 1190 225+865 100+611 25+411 25+322 347 10 20

Table 4.17 Calculation of minimum squared deviations associated with various discrete storage states in season ¢ = 1
with n = 8 seasons remaining for reservoir operation

period t = 1 n=28 Q,=24
F8(S;, Q) = min {TSD,(S;,R;,S,) + F, (S,,Q,)}

TSD, + F,/(S,, Q,)
initial 1+ F152.Q
storage final storage S, F8 R S,
S1 0 5 10 15 20 (51, Q)

0 0+1307 0+857 0+617  4+447  74+347 421 3 20
5 0+1307 0+857 0+617 0+447  29+347 376 8 20
10 0+1307 0+857 0+617 0+447  25+347 372 15, 20
15 0+1307 0+857 0+617  0+447  25+347 372 18 20

20 25+1307 25+857 25+617 25+447  50+347 397 23 20
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Table 4.18 Calculation of minimum squared deviations associated with various discrete storage states in season 7 = 4
with n = 9 seasons remaining for reservoir operation

period t = 4 n=9 Q,=18
FJ(S,,Q,) = min {TSD,(S,,R,, S;)+ F8(S;,Q)}

TSD, + F8(S,,Q,)
initial o+ F0S1 Oy
storage final storage S+ Fsd Ry4 S
S4 0 5 10 15 20 (S4.Qy4)

0 0+421 4+376  49+372 144+372 - 380 13 5
5 0+421 0+376 4+372 49+372 144+397 376  13-18 5-10
10 0+421 0+376 0+372 4+372  64+397 372 18 10
15 0+421 0+376 0+372 0+372 9+397 372 17-23 10-15
20 0+421 0+376 0+372 0+372 0+397 372 22-27 10-15

Table 4.19 Calculation of minimum squared deviations associated with various discrete storage states in season 7 = 3
with n = 10 seasons remaining for reservoir operation

periodt = 3 n=10 Q3;=6
F39(S3, Q3) = min {TSD,(S;, Ry, S,) + F,2 (S,, Q,)}

TSD3 + F,’(S,, Q,)
initial 3+ Fy7(Sy, Q4
storage final storage S4 Fy10 Ry 5,
S3 0 5 10 15 20 | (s, 0,

0 996+380 1025+376 - - - 1376 6 0
5 725+380 675+376 725+372 - - 1051 5 5
10 525+380 425+376 425+372 525+372 - 797 5 10
15 425+380 275+376 225+372 306+372 - 597 10 10

20 400+380 225+376 136+372 146+372 256+372 508 14 10
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Table 4.20 The discrete steady-state reservoir-operating policy as computed for this example problem in Tables 4.16,

4.17, 4.18 and 4.19

final storage volume
season t

A,

. release
initial season t
storage
S 1 2 3
0 8 1 6 13
5 8 1 5 13-18
10 13 6 5 18
15 18 5 10 17-23
20 23 10 14 22-27

but not on the year. This policy as defined in
Tables 4.16, 4.17, 4.18 and 4.19 is summarized
in Table 4.20.

This policy can be defined as a rule curve, as
shown in Fig. 4.18. It provides a first approxi-
mation of a reservoir release rule curve that one
can improve upon using simulation.

Table 4.20 and Fig. 4.18 define a policy that
can be implemented for any initial storage

20 10 0 5
20 15 5 5-10
20 15 10 10
20 20 10 10-15
20 20 10 10-15

volume condition at the beginning of any season
t. This can be simulated under different flow
patterns to determine just how well it satisfies the
overall objective of minimizing the weighted
sum of squared deviations from desired, but
conflicting, storage and release targets. There are
other performance criteria that may also be
evaluated using simulation, such as measures of
reliability, resilience, and vulnerability (Chap. 9).

Fig. 4.18 Reservoir rule
curve based on policy
defined in Table 4.20. Each 2 —O O
is divided i 5 20F 27
season is divided into 3 i 23 10 14
storage volume zones. The > -
releases associated with éj) 15 i 18 -
each storage volume zone 5 - 5
are specified. Also shown » [ 10
are the storage volumes that ? ¥ 18
would result if in each year 10¢- 13 6 5 ?
the actual inflows equaled -
the inflows used to derive [
this rule curve S 8 1 5
B 13
oL 3 1 6
1 2 3 4
—>> season of year t
— max storage target for flood control (t=1)
— full reservoir storage target for recreation (t= 2,3)
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Table 4.21 A simulation of the derived operating policy in Table 4.20

year season

t St + Qt -
1 1 20 24
1 2 20 12
1 3 20 6
1 4 10 18

year season

t St + Q¢ -
2 1 10 24
2 2 20 12
2 3 20 6
2 4 10 18

year season

t St + Q¢ -

3 1 10 etc ...

Rt -— Lt = St+1 TSDy
23 1 20

10 2 20

14 2 10

18 0 10

Rt = Lt = St+1 TSD ¢
13 1 20 25
10 2 20 25
14 2 10 136
18 0 10 0
Rt - Lt = St TSD ¢
repeating ...

total sum of squared deviations, TSD, =186

The storage volumes and releases in each period twill repeat themselves each year, after the first year. The annual total squared
deviations, TSD, for the specific initial and final storage volumes and release conditions are obtained from Table 4.9

Assuming the inflows that were used to derive
this policy actually occurred each year, we can
simulate the derived sequential steady-state pol-
icy to find the storage volumes and releases that
would occur in each period, year after year, once
a repetitive steady-state condition were reached.
This is done in Table 4.21 for an arbitrary initial
storage volume of 20 in season 7 = 1. You can
try other initial conditions to verify that it
requires only 2 years at most to reach a repetitive
steady-state policy.

As shown in Table 4.21, if the inflows were
repetitive and the optimal policy was followed,
the initial storage volumes and releases would

begin to repeat themselves once a steady-state
condition has been reached. Once reached, the
storage volumes and releases will be the same
each year (since the inflows are the same). These
storage volumes are denoted as a blue line on the
rule curve shown in Fig. 4.18. The annual total
squared deviations will also be the same each
year. As seen in Table 4.21, this annual mini-
mum weighted sum of squared deviations for this
example equals 186. This is what would be
observed if the inflows assumed for this analysis
repeated themselves.

Note from Tables 4.12, 4.13, 4.14, 4.15 and
4.16, 4.17, 4.18, 4.19 that once the steady-state
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sequential policy has been reached for any
specified storage volume, S,, and season f, the
annual difference of the accumulated minimum
sum of squared deviations equals a constant,
namely the annual value of the objective func-
tion. In this case that constant is 186.

F' (S, 00) — F}(S;,0,) = 186 (4122)
forall S;, Q; and t.

This condition indicates a steady-state policy
has been achieved.

This policy in Table 4.21 applies only for the
assumed inflows in each season. It does not
define what to do if the initial storage volumes or
inflows differ from those for which the policy is
defined. Initial storage volumes and inflows can
and will vary from those specified in the solution
of any deterministic model. One fact is certain:
no matter what inflows are assumed in any
model, the actual inflows will always differ.
Hence, a policy as defined in Table 4.20 and
Fig. 4.18 is much more useful than that in
Table 4.21. In Chap. 8 we will modify this
reservoir operation model to define releases or
final storage volumes as functions of not only
discrete storage volumes S, but also of discrete
possible inflows Q,. However, the policy defined
by any relatively simple optimization model
policy should be simulated, evaluated, and fur-
ther refined in an effort to identify the policy that
best meets the operating policy objectives.

4.4.8 General Comments
on Dynamic

Programming

Before ending this discussion of using dynamic
programming methods for analyzing water
resources planning, management and operating
policy problems, we should examine a major
assumption that has been made in each of the
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applications presented. The first is that the net
benefits or costs or other objective values
resulting at each stage of the problem are
dependent only on the state and decision variable
values in each stage. They are independent of
decisions made at other stages. If the returns at
any stage are dependent on the decisions made at
other stages, then dynamic programming, with
some exceptions, becomes more difficult to
apply. Dynamic programming models can be
applied to design problems, such as the capacity
expansion problem or to operating problems,
such as the water-allocation and reservoir oper-
ation problems, but rarely to problems having
both unknown design and operating policy
decision variables at the same time. While there
are some tricks that may allow dynamic pro-
gramming to be used to find the best solutions to
both design and operating problems encountered
in water resources planning, management and
operating policy studies, other optimization
methods, perhaps combined with dynamic pro-
gramming where appropriate, are often more
useful.

4,5 Linear Programming

If the objective function and constraints of an
optimization model are all linear, many readily
available computer programs exist for finding its
optimal solution. Surprisingly many water
resource systems problems meet these conditions
of linearity. These linear optimization programs
are very powerful, and unlike many other opti-
mization methods, they can be applied success-
fully to very large optimization problems
containing many variables and constraints. Many
water resources problems are too large to be
easily solved using nonlinear or dynamic pro-
gramming methods. The number of variables and
constraints simply defining mass balances and
capacity limitations in numerous time periods
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can become so big as to preclude the practical
use of most other optimization methods. Linear
programming procedures or algorithms for solv-
ing linear optimization models are often the most
efficient ways to find solutions to such problems.
Hence there is an incentive to convert large
optimization models to a linear form. Some ways
of doing this are discussed later in this chapter.

Because of the availability of computer pro-
grams that can solve linear programming prob-
lems, linear programming is arguably the most
popular and commonly applied optimization
algorithm in practical use today. It is used to
identify and evaluate alternative plans, designs
and management policies in agriculture, busi-
ness, commerce, education, engineering, finance,
the civil and military branches of government,
and many other fields.

In spite of its power and popularity, for most
real-world water resources planning and man-
agement problems, linear programming, like the
other optimization methods already discussed in
this chapter, is best viewed as a preliminary
screening tool. Its value is more for reducing the
number of alternatives for further more detailed
simulations than for finding the best decision.
This is not just because approximation methods
may have been used to convert nonlinear func-
tions to linear ones, but more likely because it is
difficult to incorporate all the complexity of the
system and all the objectives considered impor-
tant to all stakeholders into a linear model.
Nevertheless, linear programming, like other
optimization methods, can provide initial designs
and operating policy information that simulation
models require before they can simulate those
designs and operating policies.

Equations 4.41 and 4.42 define the general
structure of any constrained optimization prob-
lem. If the objective function F(X) of the vector
X of decision variables x; is linear and if all the
constraints g;(X) in Eq. 4.42 are linear, then the
model becomes a linear programming model.

4 An Introduction to Optimization Models and Methods

The general structure of a linear programming
model is

Maximize or minimize Zijj (4.123)
J

Subject to
Zaijxjgorzbi for i=1,2,3,....,m
J
(4.124)
x>0 for j=1,2,3,...,n. (4.125)

If any model fits this general form, where the
constraints can be any combination of equalities
(=) and inequalities (= or <), then a large variety
of linear programming computer programs can
be used to find the “optimal” values of all the
unknown decision variables x;. Variable non-
negativity is enforced within the solution algo-
rithms of most commercial linear programming
programs, eliminating the need to have to specify
these conditions in any particular application.

Potential users of linear programming algo-
rithms need to know how to construct linear
models and how to use the computer programs
that are available for solving them. They do not
have to understand all the mathematical details of
the solution procedure incorporated in the linear
programming codes. But users of linear pro-
gramming computer programs should understand
what the solution procedure does and what the
computer program output means. To begin this
discussion of these topics, consider some simple
examples of linear programming models.

4.5.1 Reservoir Storage

Capacity-Yield Models

Linear programming can be used to define stor-
age capacity-yield functions for a single or
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—>> active storage capacity of a reservoir

Fig. 419 Two storage-yield functions for a single
reservoir defining the maximum minimum dependable
release. These functions can be defined for varying levels
of yield reliability

multiple reservoirs. A storage capacity-yield
function defines the maximum constant “de-
pendable” reservoir release or yield that will be
available, at a given level of reliability, during
each period of operation, as a function of the
active storage volume capacity. The yield from
any reservoir or group of reservoirs will depend
on the active storage capacity of each reservoir
and the water that flows into each reservoir, i.e.,
their inflows. Figure 4.19 illustrates two typical
storage-yield functions for a single reservoir.

To describe what a yield is and how it can be
increased, consider a sequence of 5 annual flows,
say 2, 4, 1, 5, and 3, at a site in an unregulated
stream. Based on this admittedly very limited
record of flows, the minimum (historically) “de-
pendable” annual flow yield of the stream at that
site is 1, the minimum observed flow. Assuming
the flow record is representative of what future
flows might be, a discharge of 1 can be “guar-
anteed” in each period of record. (In reality, that
or any nonzero yield will have a reliability less
than 1, as will be considered in Chaps. 6 and 10.)

If a reservoir having an active storage capacity
of 1 is built, it could store 1 volume unit of flow
when the flow is greater than 2. It could then
release it along with the natural flow when the
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natural flow is 1, increasing the minimum
dependable flow to 2 units in each year. Storing 2
units when the flow is 5, releasing 1 and the
natural flow when that natural flow is 2, and
storing 1 when the flow is 4, and then releasing
the stored 2 units along with the natural flow
when the natural flow is 1, will permit a yield of
3 in each time period with 2 units of active
capacity. This is the maximum annual yield that
is possible at this site, again based on these five
annual inflows and their sequence. The maxi-
mum annual yield cannot exceed the mean
annual flow, which in this example is 3. Hence,
the storage capacity-yield function equals 1 when
the active capacity is 0, 2 when the active
capacity is 1, and 3 when the active capacity is 2.
The annual yield remains at 3 for any active
storage capacity in excess of 2.

This storage-yield function is dependent not
only on the natural unregulated annual flows but
also on their sequence. For example if the
sequence of the same 5 annual flows were 5, 2, 1,
3, 4, the needed active storage capacity is 3
instead of 2 volume units as before to obtain a
dependable flow or yield of 3 volume units. In
spite  of these limitations of storage
capacity-yield functions, historical records are
still typically used to derive them. (Ways of
augmenting the historical flow record are dis-
cussed in Chap. 6.)

There are many methods available for deriv-
ing storage-yield functions. One very versatile
method, especially for multiple reservoir sys-
tems, uses linear programming. Others are dis-
cussed in Chap. 10.

To illustrate a storage capacity-yield model,
consider a single reservoir that must provide at
least a minimum release or yield Y in each period
t. Assume a record of known (historical or syn-
thetic) streamflows at the reservoir site is avail-
able. The problem is to find the maximum
constant yield Y obtainable from a given active
storage capacity. The objective is to
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maximize Y (4.126)

This maximum yield is constrained by the
water available in each period, and by the
reservoir capacity. Two sets of constraints are
needed to define the relationships among the
inflows, the reservoir storage volumes, the
yields, any excess release, and the reservoir
capacity. The first set of continuity equations
equate the unknown final reservoir storage vol-
ume S,; in period ¢ to the unknown initial
reservoir storage volume S; plus the known
inflow Q,, minus the unknown yield Y and excess
release, R,, if any, in period t. (Losses are being
ignored in this example.)

S;+Q; —Y — R, = S, foreach period ¢
=1,2,3,..,.T.T+1=1

(4.127)

If, as indicated in Eq. 4.127, one assumes that
period 1 follows the last period 7, it is not nec-
essary to specify the value of the initial storage
volume S; and/or final storage volume Sy ..
They are set equal to each other and that variable
value remains unknown. The resulting
“steady-state” solution is based on the inflow
sequence that is assumed to repeat itself as well
as the available storage capacity, K.

The second set of required constraints ensures
that the reservoir storage volumes S, at the
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beginning of each period ¢ are no greater than the
active reservoir capacity K.

S, <K t=1,2,3,...,T (4.128)

To derive a storage-yield function, the model
defined by Eqgs. 4.126—4.128 must be solved for
various assumed values of capacity K. Only the
inflow values Q, and reservoir active storage
capacity K are assumed known. All other storage,
release and yield variables are unknown. Linear
programming will be able to find their optimal
values. Clearly, the upper bound on the yield
regardless of reservoir capacity will equal the mean
inflow (less any losses if they were included).

Alternatively, one can solve a number of lin-
ear programming models that minimize an
unknown storage capacity K needed to achieve
various specified yields Y. The resulting
storage-yield functions will be same. The mini-
mum capacity needed to achieve a specified yield
will be the same as the maximum yield obtain-
able from the corresponding specified capacity
K. However, the specified yield Y cannot exceed
the mean inflow. If an assumed value of the yield
exceeds the mean inflow, there will be no feasi-
ble solution to the linear programming model.

Box 4.1 illustrates an example storage-yield
model and its solutions to find the storage-yield
function. For this problem, and others in this
chapter, the program LINGO (freely obtained
from www .lindo.com) is used.


http://www.lindo.com

4.5 Linear Programming

I Reservoir Storage-Yield Model:

Define St as the initial active res. storage, period t,
Y as the reliable yield in each period t,

Rt as the excess release from the res., period t,

Qt as the known inflow volume to the res., period t
K as the reservoir active storage volume capacity.

i\/lax =Y ; !Applies to Model 1. Must be omitted for Model 2;
Min = K ; !Applies to Model 2. Must be omitted for Model 1;
|
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Box 4.1. Example storage capacity-yield model and its solution from LINGO

éubject to:

Mass balance constraints for each of 5 periods t.

S1+Q1-Y-R1=82;
S2+Q2-Y-R2=S83;
S3+Q3-Y-R3 =84
S4+Q4-Y-R4=S5;
S5+ Q5-Y-R5=81;
|

Capacity constraints on storage volumes.

’S1<K;S2<K;S3<K;S4<K;SS<K;

Data:

| assumes a steady-state condition;

Q1=10; Q2 =5; Q3 = 30; Q4 = 20; Q5 = 15;

INote mean = 16;

K=7?; !Use for Model 1 only. Allows user to enter
any value of K during model run.;
Y =7?; ! Use for Model 2 only. Allows user to enter

any value of Y during model run.

iEnddata

model solutions for specified values of K in model 1 or values of Y in model 2

K Y S1 S2 S3 S4

0 5 0 0 0 0
5 10 SN S 0 5
10 125 10 75 O 25
15 15 10 10 0 15
18 16 17 1 0 14

Before moving to another application of linear
programming, consider how this storage-yield
problem, Eqgs. 4.126—4.128, can be formulated as
adiscrete dynamic programming model. The use of
discrete dynamic programming is clearly not the
most efficient way to define a storage-yield func-
tion but the problem of finding a storage-yield

S5 R1 R2 R3 R4 R5

0 5 0 25 15 10
5 0 0 15 10 5
10 0 0 15 0 25
15 0 0 0 5 0
18 0 0 0 0 0

function provides a good exercise in dynamic
programming. The dynamic programming net-
work has the same form as shown in Fig. 4.19,
where each node is a discrete storage and inflow
state, and the links represent releases. Let F7' (S;) be
the maximum yield obtained given a storage
volume of S; at the beginning of period ¢ of a year
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with n periods remaining of reservoir operation.
For initial conditions, assume all values of F2(S,)
for some final period ¢ with no more periods n re-
maining equal a large number that exceeds the
mean annual inflow. Then for the set of feasible
discrete total releases R;:

F/(S;) = max{min[R,, /" } (Si11)]} (4.129)

This applies for all discrete storage volumes S,
and for all within-year periods ¢ and remaining
periods n. The constraints on the decision vari-
ables R, are

R <S5+ 0
RtZSI+Qt_K7
St+] :SZ+QI_RI

and (4.130)

These recursive Eqgs. 4.129 together with
constraint Eqs. 4.130 can be solved, beginning
with n =1 and then for successive values of
seasons ¢t and remaining periods n, until a
steady-state solution is obtained, that is, until

Fi(S) =F;7'(5)

for all values of S, and periods t. (4.131)

The steady-state yields F«(S,) will depend on
the storage volumes S,. High initial storage
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volumes will result in higher yields than will
lower ones. The highest yield will be that asso-
ciated with the highest storage volumes and it
will equal the same value obtained from either of
the two linear programming models.

452 A Water Quality Management

Problem

Some linear programming modeling and solu-
tion techniques can be demonstrated using the
simple water quality management example
shown in Fig. 4.21. In addition, this example can
serve to illustrate how models can help identify
just what data are needed and how accurate they
must be for the decisions that are being
considered.

The stream shown in Fig. 4.20 receives
wastewater effluent from two point sources
located at sites 1 and 2. Without some wastew-
ater treatment at these sites, the concentration of
some pollutant, P; mg/l, at sites j = 2 and 3, will
continue to exceed the maximum desired con-
centration P;**. The problem is to find the level
of wastewater treatment (waste removed) at sites
i=1 and 2 that will achieve the desired con-
centrations just upstream of site 2 and at site 3 at
a minimum total cost.

firm 1
producing W

eam“°w site 2

W2 (1-x2)

str

site 1

Wi (1-x4)

firm 2
producing Wo

recreation
park

site 3

Fig. 4.20 A stream pollution problem that requires
finding the waste removal efficiencies (x;, x,) of wastew-
ater treatment at sites 1 and 2 that meet the stream quality

standards at sites 2 and 3 at minimum total cost. W; and
W, are the amounts of pollutant prior to treatment at sites
1 and 2
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This is the classic water quality management
problem that is frequently found in the literature,
although least-cost solutions have rarely if ever
been applied in practice. There are valid reasons
for this that we will review later. Nevertheless,
this particular problem can serve to illustrate the
development of some linear models for deter-
mining data needs as well as for finding, in this
case, cost-effective treatment efficiencies. This
problem can also serve to illustrate graphically
the general mathematical procedures used for
solving linear programming problems.

The first step is to develop a model that pre-
dicts the pollutant concentrations in the stream as
a function of the pollutants discharged into it. To
do this we need some notation. Define W; as the
mass of pollutant generated at site j (j = 1, 2)
each day. Without any treatment and assuming
no upstream pollution concentration, the dis-
charge of Wy (in units of mass per unit time,
(M/T) at site j = 1 results in pollutant concen-
tration of P; in the stream at that site. This
concentration, (M/L?) equals the discharge W,
(M/T) divided by the streamflow Q; (L3T) at
that site. For example, assuming the concentra-
tion is expressed in units of mg/l and the flow is
in terms of m3/s, and mass of pollutant dis-
charged is expressed as kg/day, and the flow
component of the wastewater discharge is neg-
ligible compared to the streamflow, the resulting
streamflow concentration P, at site j=1 is
WI/ 86.4 Ql:

P (mg/1) = Mass W; discharged at site 1 (kg/day)/
streamflow Q) atsite 1 (m’ /s)/
(kg/10° mg) (86,4005 /day) (10° L/m’)
= W,/86.40,
(4.132)

Each unit of a degradable pollutant mass in
the stream at site 1 in this example will decrease
as it travels downstream to site 2. Similarly each
unit of the pollutant mass in the stream at site 2
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will decrease as it travels downstream to site 3.
The fraction a;; of the mass at site i that reaches
site j is often assumed to be
o = exp(—kt;), (4.133)
where k is a rate constant (1/time unit) that
depends on the pollutant and the temperature,
and ¢;; is the time (number of time units) it takes a
particle of pollutant to flow from site i to site
j. The actual concentration at the downstream
end of a reach will depend on the streamflow at
that site as well as on the initial pollutant mass,
the time of travel and decay rate constant k.
In this example problem, the fraction of pol-
lutant mass at site 1 that reaches site 3 is the
product of the transfer coefficients o, and a55:

13 = 120023 (4134)

In general, for any site k between sites i and j:

O(,‘j = Ocikakj (4135)

Knowing the a;; values for any pollutant and
the time of flow #; permits the determination of
the rate constant & for that pollutant and reach, or
contiguous series of reaches, from sites i to j,
using Eq. 4.133. If the value of k is 0, the pol-
lutant is called a conservative pollutant; salt is an
example of this. Only increased dilution by less
saline water will reduce its concentration.

For the purposes of determining wastewater
treatment efficiencies or other capital investments
in infrastructure designed to control the pollutant
concentrations in the stream, some “design”
streamflow conditions have to be established.
Usually the design streamflow conditions are set
at low-flow values (e.g., the lowest monthly
average flow expected once in twenty years, or
the minimum 7-day average flow expected once
in ten years). Low design flows are based on the
assumption that pollutant concentrations will be
higher in low-flow conditions than in higher flow
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conditions because of less dilution. While
low-flow conditions may not provide as much
dilution, they result in longer travel times, and
hence greater reductions in pollutant masses
between water quality monitoring sites. Hence
the pollutant concentrations may well be greater
at some downstream site when the flow condi-
tions are higher than those of the design low-flow
value.

In any event, given particular design stream-
flow and temperature conditions, our first job is
to determine the values of these dimensionless
transfer coefficients a;;. They will be independent
of the amount of waste discharged into the
stream as long as the stream stays aerobic. To
determine both @, and ay3; in this example
problem (Fig. 4.20) requires a number of pollu-
tant concentration measurements at sites 1, 2 and
3 during design streamflow conditions. These
measurements of pollutant concentrations must
be made just downstream of the wastewater
effluent discharge at site 1, just upstream and
downstream of the wastewater effluent discharge
at site 2, and at site 3.

Assuming no change in streamflow and no
extra pollutant entering the reach that begins at
site 1 and ends just upstream of site 2, the mass
(kg/day) of pollutants just upstream of site 2 will
equal the mass at site 1, Wy, times the transfer
coefficient ay5:

Mass just upstream of site 2 = Wyap  (4.136)

From this equation and 4.132 one can calcu-
late the concentration of pollutants just upstream
of site 2.

The mass of additional pollutant discharged
into site 2 is W,. Hence the total mass just
downstream of site 2 is Wy, + W,. At site 3 the
pollutant mass will equal the mass just down-
stream of site 2, times the transfer coefficient a,s.
Given a streamflow of Q3 m’/s and pollutant
masses W, and W, kg/day, the pollutant con-
centration Pz expressed in mg/l will equal
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P3 = [W[O(12 + Wz] 0623/(864Q3) (4137)

4.5.2.1 Model Calibration

Sample measurements are needed to estimate the
values of each reach’s pollutant transport coeffi-
cients a;. Assume five pairs of sample pollutant
concentration measurements have been taken in
the two stream reaches (extending from site 1 to
site 2, and from site 2 to site 3) during design
flow conditions. For this example, also assume
that the design streamflow just downstream of
site 1 and just upstream of site 2 are the same and
equal to 12 m%/s. The concentration samples
taken just downstream from site 1 and just
upstream of site 2 during this design flow con-
dition can be used to solve for the transfer
coefficients o, and a,; after adding error terms.
More than one sample is needed to allow for
measurement errors and other random effects
such as those from varying temperature, wind,
incomplete mixing or varying wasteload dis-
charges within a day.

Denote the concentrations of each pair of
sample measurements s in the first reach (just
downstream of site 1 and just upstream of site 2)
as Ps and P, and their combined error as E..
Thus

Py + E; = P15012(Q;/0>) (4.138)

The problem is to find the best estimates of
the unknown a,. One way to do this is to define
“best” as those values of a;, and all E, that
minimize the sum of the absolute values of all the
error terms E,. This objective could be written

Minimize Z |E]

S

(4.139)

The set of Eqgs. 4.138 and 4.139 is an opti-
mization model. The absolute value signs in
Eq. 4.139 can be removed by writing each error
term as the difference between two nonnegative
variables, PE; — NE,. Thus for each sample pair s:
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E; = PE; — NE; (4.140)

If any E; is negative, PE; will be 0 and —NE,
will equal E,. The actual value of NE; is nonneg-
ative. If E; is positive, it will equal PE;, and NE;
will be 0. The objective function, Eq. 4.139, that
minimizes the sum of absolute value of error terms,
can now be written as one that minimizes the sum
of the positive and negative components of E:

Minimize Z (PE + NE;)

S

(4.141)

Equations 4.139 and 4.140, together with
objective function 4.141 and a set of measure-
ments, P; and Py, upstream and downstream of
the reach between sites 1 and 2 define a linear
programming model that can be solved to find
the transfer coefficient a;,. An example illus-
trating the solution of this model for the stream
reach between site 1 and just upstream of site 2 is
presented in Box 4.2. (In this model the mea-
sured concentrations are denoted as SP;, rather
than Pj. Again, the program LINGO (www.
lindo.com) is used to solve the model).

Box 4.3 contains the model and solution for
the reach beginning just downstream of site 2 to
site 3. In this reach the design streamflow is
12.5 m*/s due to the addition of wastewater flow
at site 2.

As shown in Boxes 4.2 and 4.3, the values of
the transfer coefficients are oq, = 0.25 and
03 =0.60. Thus from Eq.4.134,
Or3 = 013 = 0.15.

012

4,5.2.2 Management Model

Now that these parameter values o;; are known, a
water quality management model can be devel-
oped. The water quality management problem,
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illustrated in Fig. 4.20, involves finding the
fractions x; of waste removal at sites i = 1 and 2
that meet the stream quality standards at the end
of the two reaches at a minimum total cost.

The pollutant concentration, P,, just upstream
of site 2 that results from the pollutant concen-
tration at site 1 equals the total mass of pollutant
at site 1 times the fraction o, that remains at site
2, divided by the streamflow Q, at site 2. The
total mass of pollutant at site 1 at the wastewater
discharge point is the sum of the mass just
upstream of the discharge site, P,Q;, plus the
mass discharged into the stream, W (1 — xy), at
site 1. The parameter W; is the total mass of
pollutant entering the treatment plant at site 1.
Similarly for site 2. The fraction of waste
removal, x;, at site 1 is to be determined. Hence
the concentration of pollutant just upstream of
site 2 is

Py = [P1Qy + Wi(1 —x1)]on/Qr (4.142)

The terms P, and Q; are the pollutant con-
centration (M/L3) and streamflow (L3 /T) just
upstream of the wastewater discharge outfall at
site 1. Their product is the mass of pollutant at
that site per unit time period (M/T).

The pollutant concentration, P3, at site 3 that
results from the pollutant concentration at site 2
equals the total mass of pollutant at site 2 times
the fraction a,3. The total mass of pollutant at site
2 at the wastewater discharge point is the sum of
what is just upstream of the discharge site, P,0»,
plus what is discharged into the stream,
W>(1 — x,). Hence the concentration of pollutant
at site 3 is

Py = [P20y + Wa(1 = x2)]ax/Q3  (4.143)


http://www.lindo.com
http://www.lindo.com
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Box 4.2. Calibration of water quality model transfer coefficient parameter a;,

! Calibration of Water Quality Model parameter a,,.

Define variables:

SPI(k) = sample pollutant concentration just downstream of site | (mg/l).
SP2(k) = sample pollutant concentration just upstream of site 2 (mg/I).

PE(k) = positive error in pollutant conc. sample just upstream of site 2 (mg.l).
NE(k) = negative error in pollutant conc. sample just upstream of site 2 (mg.l).

Qi = streamflow at site i (i=1, 2), (m3/s).

al2 = pollutant transfer coefficient for stream reach between sites | and 2. ;

Sets:

Sample / I..5/: PE, NE, SPI, SP2 ;
Endsets

|

Objective: Minimize total sum of positive and negative errors.

Min = @sum( Sample: PE + NE)

! Subject to constraint for each sample k:

@For (Sample: al2*SPI = (SP2 + PE - NE )* (Q2/Ql));

Data:
SPI = 232, 256, 220, 192, 204,

SP2 = 55, 67, 53, 50, 51;
QI = 12; 'Flow downstream of site |; Q2 = [2; !Flow upstream of site 2;
Enddata

Solution: a,, = 0.25; Total sum of absolute values of deviations = 10.0

Equations 4.142 and 4.143 will become the
predictive portion of the water quality manage-
ment model. The remaining parts of the model
include the restrictions on the pollutant concen-
trations just upstream of site 2 and at site 3, and
limits on the range of values that each waste
removal efficiency, x; can assume.

P;<P™* for j=2and3 (4.144)

0<x;<1.0 fori=1and2. (4.145)

Finally, the objective is to minimize the total
cost of meeting the stream quality standards P5'**
and P specified in Eqs. 4.144. Letting Cy(x;)

represent the cost function of wastewater treat-

ment at sites i = / and 2, the objective can be

written:
Minimize C] (xl) + C2 (Xz) (4146)

The complete optimization model consists of
Eqgs. 4.142-4.146. There are four unknown
decision variables, x;. x;, P,, and Ps.

Some of the constraints of this optimization
model can be combined to remove the two
unknown concentration values, P, and Ps.
Combining Eqs. 4.142 and 4.144, the concen-
tration just upstream of site 2 must be no greater
than Py™:
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[P1O1 + Wi (1 — x1)]ou2/ O < pmx (4.147) Equation 4.148 assumes that each pollutant
discharged into the stream can be tracked

Combining Eqs. 4.143 and 4.144, and using downstream, independent of the other pollutants
the fraction o,5 (see Eq. 4.134) to predict the in the stream. Alternatively, Eq. 4.148 computes
contribution of the pollutant concentration at site  the sum of all the pollutants found at site 2 and
1 on the pollutant concentration at Site 3: then uses that total mass to compute the con-
centration at site 3. Both modeling approaches

{[P1Q1 + Wi(1 — x1)]os + [Wa (1l — x2)]aa3}/ Q3 < P§™*  give the same results if the parameter values and

(4.148) cost functions are the same.

Box 4.3. Calibration of water quality model transfer coefficient parameter a,;

! Calibration of Water Quality Model parameter a,,.

Define variables:

SP2(k) = sample pollutant concentration just downstream of site 2 (mg/I).
SP3(k) = sample pollutant concentration at site 3. (mg/l).

PE(k) = positive error in pollutant conc. sample at site 3 (mg/l).

NE(k) = negative error in pollutant conc. sample at site 3 (mg/l).

Qi = streamflow at site i (i=2, 3), (m3/s).

a23 = pollutant transfer coefficient for stream reach between sites 2 and 3.

Sets:

Sample / I..5/: PE, NE, SP2, SP3 ;
Endsets

|

Objective: Minimize total sum of positive and negative errors.
Min = @sum( Sample: PE + NE)

! Subject to constraint for each sample k:

@For (Sample: a23 * SP2 = (SP3 + PE NE )* (Q3/Q2) );
Data:

SP2 = 158, 180, 140, 150, 135;

SP3 = 96, 107, 82, 92, 8I;

Q2 = I3; !'Flow just downstream of site 2; Q3 = |3; !Flow at site 3;
Enddata

Solution: a,, = 0.60; Total sum of absolute values of deviations = 6.2
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Table 4.22 Parameter values selected for the water quality management problem illustrated in Fig. 4.20

parameter unit value
Q, m3s 10
3 3 12
o Q; m?/s
Q; mis 13
,2 W, kg/day 250,000
S
3 W, kg/day 80,000
& P, mg/| 32
&
5 ":’ P, mg/| 20
©
23 P3 mg/I 20
e dp2 —— 0.25
.2
§C a3 - 0.15
g g
C= a3 —— 060

To illustrate the solution of either of these
models, assume the values of the parameters are
as listed in Table 4.22. Rewriting the water
quality management model defined by
Egs. 4.145-4.148 and substituting the parameter
values in place of the parameters, and recalling
that kg/day = 86.4 (mg/l)(m*/s):

The water quality constraint at
Eq. 4.147, becomes

site 2,

[(32)(10) +250,000(1 — x1)/86.4]0.25/12 < 20

that when simplified is

X1 >0.78. (4.149)

The water quality constraint at site 3,
Eq. 4.148, becomes

{[(32)(10) 4+ 250,000(1 — x1)/86.4]0.15
+[80,000(1 — x,)/86.4]0.60} /13 <20

that when simplified is

remark
flow just upstream of site |
flow just upstream of site 2

flow at park

pollutant mass produced at site |

pollutant mass produced at site 2

concentration just upstream of site |
maximum allowable concentration upstream of 2

maximum allowable concentration at site 3

fraction of site | pollutant mass at site 2
fraction of site | pollutant mass at site 3

fraction of site 2 pollutant mass at site 2

X1 +1.28x, > 1.79. (4.150)

Restrictions on fractions of waste removal,
Eq. 4.145, must also be added to this model.

The feasible combinations of x; and x, can be
shown on a graph, as in Fig. 4.21. This graph is a
plot of each constraint, showing the boundaries
of the region of combinations of x; and x, that
satisfy all the constraints. This red shaded region
is called the feasible region.

To find the least-cost solution we need the cost
functions C;(x;) and C,(x,) in Egs. 4.146. Suppose
these functions are not known. Can we determine
the least-cost solution without knowing these costs?
Models like the one just developed can be used to
determine just how accurate these cost functions (or
the values of any of the model parameters) need to
be for the decisions being considered.

While the actual cost functions are not known
in this example, their general form can be
assumed, as shown in Fig. 4.22. Since the
wasteloads produced at site 1 are substantially
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Fig. 4.21 Plot of the
constraints of water quality
management model
identifying those values of
the unknown (decision)
variables x; and x, that
satisfy all the constraints.
These feasible values are
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Fig. 4.22 General form of
total cost functions for
wastewater treatment
efficiencies at sites 1 and 2
in Fig. 4.20. The dashed
straight-line slopes c¢; and
¢, are the average cost per
unit (%) removal for 80%
treatment. The actual
average costs clearly
depend on the values of the
waste removal efficiencies
x1 and x,, respectively

.'/

—3=- total costs (?)

1

gee )
Gy

swe L

€2

i il L i 1 L 1 J

0.0 0.1

02 03 04 05 06 07 08 09 1.0

—3- treatment efficiency, x;, at site i

greater than those produced at site 2, and given
similar site, labor, and material cost conditions, it
seems reasonable to assume that the cost of
providing a specified level of treatment at site 1
would exceed (or certainly be no less than) the
cost of providing the same specified level of
treatment at Site 2. It would also seem the mar-
ginal costs at site 1 would be greater than, or at
least no less than, the marginal costs at site 2 for

any given treatment efficiency. The relative
positions of the cost functions shown in Fig. 4.23
are based on these assumptions.

Rewriting the cost function, Eq. 4.146, as a
linear function converts the model defined by
Egs. 4.145-4.148 into a linear programming
model. For this example problem, the linear
programming model can be written as:
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Fig. 4.23 Plots of various
objective functions (dashed Xy
lines) together with the
constraints of the water ?
quality management model 1.5
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Minimize ¢1x; + cox (4.151) Note this particular least-cost solution also

Equation 4.151 is minimized subject to con-
straints 4.145, 4.149 and 4.150. The values of ¢;
and ¢, depend on the values of x; and x, and both
pairs are unknown. Even if we knew the values of
x; and x, before solving the problem, in this
example the cost functions themselves (Fig. 4.22)
are unknown. Hence, we cannot determine the
values of the marginal costs ¢; and c,. However,
we might be able to judge which marginal cost
will likely be greater than the other for any par-
ticular values of the decision variables x; and x,.
In this example that is all we need to know.

First, assume c; equals c,. Let ¢ x1 + ¢ x>
equal ¢ and assume c/c; = 1. Thus the cost
function is x; + x, = 1.0. This line can be plotted
onto the graph in Fig. 4.21, as shown by line “a”
in Fig. 4.23.

Line “a” in Fig. 4.23 represents equal values
for ¢; and ¢,, and the total cost, ¢; x; + ¢p X,
equal to 1. Keeping the slope of this line constant
and moving it upward, representing increasing
total costs, to line “b”, where it covers the nearest
point in the feasible region, will identify the
least-cost combination of x; and x,, again
assuming the marginal costs are equal. In this
case the solution is approximately 80% treatment
at both sites.

applies for any value of ¢; greater than ¢, (for
example line “c” in Fig. 4.23). If the marginal
cost of 80% treatment at site 1 is no less than the
marginal cost of 80% treatment at site 2, then
c1 2 ¢, and indeed the 80% treatment efficiencies
will meet the stream standards for the design
streamflow and wasteload conditions at a total
minimum cost. In fact, from Fig. 4.23 and
Eq. 4.150, it is clear that ¢, has to exceed c¢; by a
multiple of 1.28 before the least-cost solution
changes to another solution. For any other
assumption regarding c¢; and c¢,, 80% treatment at
both sites will result in a least-cost solution to
meeting the water quality standards for those
design wasteload and streamflow conditions.

If ¢, exceeds 1.28cy, as illustrated by line “d”,
then the least-cost solution would be x; = 100%
and x; = 62%. Clearly, in this example the
marginal cost, ¢, of providing 100% wasteload
removal at site 1 will exceed the marginal cost,
¢, of 60% removal at site 2, and hence, that
combination of efficiencies would not be a
least-cost one. Thus we can be confident that the
least-cost solution is to remove 80% of the waste
produced at both waste-generating sites.

Note the least-cost wasteload removal effi-
ciencies have been determined without knowing
the cost functions. Why spend money defining
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these functions more precisely? The answer:
costs need to be known for financial planning, if
not for economic analyses. No doubt the actual
costs of installing the least-cost treatment effi-
ciencies of 80% will have to be determined for
issuing bonds or making other arrangements for
paying the costs. However, knowing the
least-cost removal efficiencies means we do not
have to spend money defining the entire cost
functions Ci(x;). Estimating the construction and
operating costs of achieving just one wastewater
removal efficiency at each site, namely 80%,
should be less expensive than defining the total
costs for a range of practical treatment plant
efficiencies that would be required to define the
total cost functions, such as shown in Fig. 4.22.

Admittedly this example is relatively simple.
It will not always be possible to determine the
“optimal” solutions to linear programming
problems, or other optimization problems, with-
out knowing more about the objective function
than was assumed for this example. However,
this exercise illustrates the use of modeling for
purposes other than finding good or “optimal”
solutions. Models can help define the necessary
precision of the data needed to find those
solutions.

Modeling and data collection and analysis
should take place simultaneously. All too often
planning exercises are divided into two stages:
data collection and then analysis. Until one
knows what data one will need, and how accurate
those data must be, one need not spend money
and time collecting them. Conversely, model
development in the absence of any knowledge of
the availability and cost of obtaining data can
lead to data requirements that are costly, or even
impossible, to obtain, at least in the time avail-
able for decision-making. Data collection and
model development are activities that should be
performed simultaneously.

Because software is widely available to solve
linear programming programs, because these
software programs can solve very large problems
containing thousands of variables and con-
straints, and finally because there is less chance
of obtaining a local “nonoptimal” solution when
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the problem is linear (at least in theory), there is
an incentive to use linear programming to solve
large optimization problems. Especially for large
optimization problems, linear programming is
often the only practical alternative for finding at
least an approximate optimal solution. Yet
models representing particular water resources
systems may not be linear. This motivates the use
of methods that can approximate nonlinear
functions with linear ones, or the use of other
search algorithms such as those discussed in
Chap. 5).

The following simple groundwater supply
problem illustrates the application of some lin-
earization methods commonly applied to non-
linear separable functions—functions of only one
unknown variable.

These approximation methods typically
increase the number of variables and constraints
in a model. Some of these methods require integer
variables, or variables that can have values of
only O or 1. There is a practical limit on the
number of integer variables any linear program-
ming software program can handle. Hence, for
large models there may be a need to perform
some preliminary screening designed to reduce
the number of alternatives that should be con-
sidered in more detail. This example can be used
to illustrate an approach to preliminary screening.

453 A Groundwater Supply

Example

Consider a water-using industry that plans to
obtain water from a groundwater aquifer. Two
wellfield sites have been identified. The first
question is how much will the water cost, and the
second, given any specified amount of water
delivered to the user, is how much should come
from each wellfield. This situation is illustrated
in Fig. 4.24.

Wells and pumps must be installed and oper-
ated to obtain water from these two wellfields.
The annual cost of wellfield development will
depend on the pumping capacity of the wellfield.
Assume that the annual costs associated with
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Fig. 4.24 Schematic of a potential groundwater supply
system that can serve a water-using industry. The
unknown variables are the flows, QA and Qg, from each
wellfield

various capacities Q4 and Qp for Wellfields A and
B, respectively, are as shown in Fig. 4.25. These
are nonlinear functions that contain both fixed
and variable costs and hence are discontinuous.
The fixed costs result from the fact that some of
the components required for wellfield develop-
ment come in discrete sizes. As indicated in the
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figure, the maximum flow capacity of Wellfields
A and B are 17 and 13, respectively.

In Fig. 4.25, the nonlinear functions on the
left have been approximated by piecewise linear
functions on the right. This is a first step in lin-
earizing nonlinear separable functions. Increas-
ing the number of linear segments can reduce the
difference between the piecewise linear approxi-
mation of the actual nonlinear function and the
function itself. At the same time it will increase
the number of variables and possibly constraints.

When approximating a nonlinear function by a
series of straight lines, model developers should
consider two factors. The first is just how accurate
need be the approximation of the actual function
for the decisions that will be made, and second is
just how accurate is the actual (in this case non-
linear) function in the first place. There is little
value in trying to eliminate relatively small errors
caused by the linearization of a function when the
function itself is highly uncertain. Most cost and
benefit functions, especially those associated with
future activities, are indeed uncertain.
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Fig. 4.25 Annual cost functions associated with the Wellfields A and B as shown in Fig. 4.24. The actual functions are
shown on the left, and two sets of piecewise linear approximations are shown on the right
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4.5.3.1 A Simplified Model
Two sets of approximations are shown in
Fig. 4.26. Consider first the approximations
represented by the light blue dot-dash lines.
These single straight lines are very crude
approximations of each function. In this example
these straight-line cost functions are lower
bounds of the actual nonlinear costs. Hence, the
actual costs may be somewhat higher than those
identified in the solution of a model.

Using the blue dot-dash linear approximations
in Fig. 4.26, the linear programming model can
be written as follows:

Minimize CostA + CostB (4.152)

Subject to

CostA = SIA + [(40 — 8)/17]QA
linear approximation of C(Qy,)
(4.153)

CostB = 1515+ [(26 — 15)/13]Qp
linear approximation of C(Qp)
(4.154)

In,Ipare 0,1 integer (binary) variables
(4.155)

O4 <1714 limits Q4 to 17 and forces I = 1
if Q4 >0
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Qp < 13Ig limits Qg to 13 and forces Iz = 1

if Qg >0
(4.157)
04 + O = Q mass balance (4.158)
Qa QA7 QB > 0
non-negativity of all decision variables
(4.159)

Q = some specified amount from 0 to 30.
(4.160)

The expressions within the square brackets,
[ ], in Egs. 4.154 and 4.155 above represent the
slopes of the dot-dash linear approximations of
the cost functions. The integer O, 1 variables are
required to include the fixed costs in the model.

Solving this linear model for various values of
the water demand Q provides some interesting
results. Again, they are based on the dot-dash
linear cost functions in Fig. 4.25. As Q increases
from O to just under 6.8, all the water will come
from the less expensive Wellfield A. For any
Q from 6.8 to 13, Wellfield B becomes less
expensive and all the water will come from it. For
any Q greater than the capacity of Wellfield B of 13
but no greater than the capacity of Wellfield A, 17,
all of it will come from Wellfield A. Because of the
fixed costs, it is cheaper to use one rather than both
wellfields. Beyond Q = 17, the maximum capac-
ity of A, water needs to come from both wellfields.

(4.156)  Wellfield B will pump at its capacity, 13, and the
additional water will come from Wellfield A.
Fig. 4.26 Least-cost
wellfield use given total
demand Q based on model T; 20 -
defined by Eqs. 4.152 to ]
4.160 £ sl A
3
I B
? 10 |
Tost
o 1 1 1 1 1 J
0 5 10 15 20 25 30
—)> total demancy
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Figure 4.26 illustrates these solutions. One
can understand why in situations of increasing
demands for Q over time, capacity expansion
modeling might be useful. One would not close
down a wellfield once developed, just to achieve
what would have been a least-cost solution if the
existing wellfield had not been developed.

4,53.2 A More Detailed Model

A more accurate representation of these cost
functions may change these solutions for various
values of Q, although not significantly. However
consider the more accurate cost minimization
model that includes the red solid-line piecewise
linearizations shown in Fig. 4.26.

Minimize CostA + CostB (4.161)

Subject to
linear approximation of cost functions:

CostA = {8141 +[(20 — 8)/5]0a1}
+ {2614, + [(30 — 26) /(10 — 5)]|Q42}
+ {35043 + [(40 — 35) /(17 — 10)]0as}
(4.162)

CostB = {151+ [(18 — 15)/3]Qp: }
+ {1815, 4+ [(20 — 18) /(10 — 3)] 02
+[(26 —20)/(13 — 10)] Qg3 }

(4.163)
0,4 and Qp defined.

Ox = 0a1 + (5142 + Quz) + (10143 + Qa3)

(4.164)

Op =01+ (3Ipo+0p>+0p3)  (4.165)
1,; and I, are O, 1 integer variables

aemE eser v (4.166)

for all segments i

Qa1 <5l4
Qa2 < (10 — 5) 152,
O3 < (17 = 10)I43  limits Qy; to width of
segmentiand forces I4; = 1if Q4; > 0
(4.167)
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Iy + 14 + 143 <1  limits solution to at most
only one cost function segment i.

(4.168)

Op1 <31y,

Op2 < (10 — 3)Ipy,

Op3 < (13 — 10)I, limits Qp; to width of
segment i and forces Ig; = 1if Qp; > 0.

(4.169)
Ip +1p <1 (4.170)
Q = Q4 + Qp mass balance (4.171)
Qa QAa QB Z 0
non-negativityof all decision variables
(4.172)

QO = some specified amount from 0 to 30
(4.173)

Constraint (4.170) limits the solution to at
most only the first segment or to the second and
third segments of the cost function for wellfield
B. Note that a 0, 1 integer variable for the fixed
cost of the third segment of this function is not
needed since its slope exceeds that of the second
segment. However the flow, Qps, in that segment
must be bounded using the integer 0, 1 variable,
Ip,, associated with the second segment, as
shown in the third of Egs. 4.169.

The solution to this model, shown in Fig. 4.27,
differs from the solution of the simpler model, but
only in the details. Wellfield A supplies all the
water for Q < 4.3. For values of Q in excess of 4.3
up to 13 all the water comes from Wellfield B. For
values of Q in excess of 13 up to 14.8, the capacity
of Wellfield B remains at its maximum capacity of
13 and Wellfield A provides the additional amount
of needed capacity over 13. As Q increases from
14.9 to 17, the capacity of Wellfield B drops to O
and the capacity of Wellfield A increases from 14.9
to 17. For values of Q between 17 and 18 Wellfield
B provides 13, its maximum capacity, and the
capacity of A increases from 4 to 5. For values of
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Fig. 4.27 Least-cost -
wellfield use given total __,/
demand Q based on / = 20
Egs. 4.161 to 4.173 & A
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Q from 18.1 to 20, Wellfield B decreases to a
constant 10, and Wellfield A increases from 8.1 to
10. For values of Q from 20 to 23, Wellfield
A remains at 10 and Wellfield B increases from 10
to 13. For values of Q from 23 to 27, Wellfield
B again drops to a constant 10 and Wellfield A in-
creases from 13 to 17. For values of Q in excess of
27, Wellfield A remains at its maximum capacity of
17, and Wellfield B increases from 10 to 13.

As in the previous example, this shows the
effect on the least-cost solution when one cost
function has relatively lower fixed and higher
variable costs compared with another cost func-
tion having relatively higher fixed and lower
variable costs.

4.53.3 An Extended Model

In this example, the simpler model (Egs. 4.152—
4.160) and the more accurate model (Egs. 4.161—
4.173) provided essentially the same allocations
of wellfield capacities associated with a specified
total capacity Q. If the problem contained a lar-
ger number of wellfields, the simpler (and
smaller) model might have been able to eliminate
some of these wellfields from further considera-
tion. This would reduce the size of any new
model that approximates the cost functions of the
remaining wellfields more accurately.

The model just described, like the capacity
expansion model and water quality management
model, is another example of a cost-effective
model. The objective was to find the least-cost

z//

way of providing a specified amount of water to
a water user. It does not address the problem of
planning for an increasing demand for Q over
time. Clearly it makes no sense to implement the
particular cost-effective solution for any value of
0O, as shown in Fig. 4.27, as the demand for
Q increases, as in this example, from 0 to 30.
This is the capacity expansion problem, the
solution of which will benefit from models that
take time into account and that are not static as
illustrated previously in this chapter.

Next, consider a cost-benefit analysis in
which the question is just how much water
should users use. To address this question we
assume the user has identified the annual benefits
associated with various amounts of water. The
annual benefit function, B(Q), and its piecewise
linear approximations, are shown in Fig. 4.28.

The straight, blue, dot-dash linear approxima-
tion of the benefit function shown in Fig. 4.28 isan
upper bound of the benefits. Incorporating it into a
model that uses the dot-dash linear lower bound
approximations of each cost function, as shown in
Fig. 4.25 will produce an optimistic solution. It is
unlikely that the value of Q that is based on more
accurate and thus less optimistic benefit and cost
functions will be any greater than the one identi-
fied by this simple optimistic model. Furthermore,
if any wellfield is not in the solution of this opti-
mistic model, with some care we might be able to
eliminate that wellfield from further consideration
when developing a more accurate model.



156

An Introduction to Optimization Models and Methods

fit B (Q)\

—> annual bene

—>»> flow Q

— annual benefit B (Q)

0
0 L
oV 9 21 30

Fig. 4.28 Benefit function of the amount of water provided to the water user. Piecewise linear approximations of that

function of flow are shown on the right

Any component of a water resources system
that does not appear in the solution of a model
that includes optimistic approximations of per-
formance measures that are to be maximized,
such as benefits, or that are to be minimized, such
as costs, are candidates for omission in any more
detailed model. This is an example of the process
of preliminary screening.

The model defined by Egs. 4.152-4.160 can
now be modified. Equation 4.160 is eliminated
and the cost minimization objective Eq. 4.152 is
replaced with:

Maximize Benefits — (CostA + CostB)

(4.174)
where

Benefits = 10+ [(45 — 25)/(21 — 9)]Q
linear approximation of B(Q)

(4.175)

The solution of this model, Egs. 4.153-4.159,
4.174, and 4.175 (plus the condition that the
fixed benefit of 10 only applies if Q > 0, added
because it is clear the benefits would be 0 with a
Q of 0) indicates that only Wellfield B needs to
be developed, and at a capacity of 10. This would
suggest that Wellfield A can be omitted in any
more detailed modeling exercise. To see if this
assumption, in this example, is valid, consider

the more detailed model that incorporates the red,
solid-line linear approximations of the cost and
benefit functions shown in Figs. 4.25 and 4.28.
Note that the approximation of the generally
concave benefit function in Fig. 4.29 will result
in negative values of the benefits for small values
of Q. For example, when the flow Q, is O the
approximated benefits are —10. Yet the actual
benefits are 0 as shown in the left part of
Fig. 4.28. Modeling these initial fixed benefits
the same way as the fixed costs have been
modeled, using another 0, 1 integer variable,
would allow a more accurate representation of
the actual benefits for small values of Q.
Alternatively, to save having to add another
integer variable and constraint to the model, one
can allow the benefits to be negative. If the
model solution shows negative benefits for some
small value of Q, then obviously the more pre-
ferred value of Q, and benefits, would be 0. This
more approximate trial-and-error approach is
often preferred in practice, especially when a
model contains a large number of variables and
constraints. This is the approach taken here.

4.5.3.4 Piecewise Linear Model

There are a number of ways of modeling the
piecewise linear concave benefit function shown
on the right side of Fig. 4.28. Several are defined
in the next several sets of equations. Each
method will result in the same model solution.
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One approach to modeling the concave benefit
function is to define a new unrestricted (possibly
negative valued) variable. Let this variable be
Benefits. When being maximized this variable
cannot exceed any of the linear functions that
bound the concave benefit function:

Benefits < — 10+ [(25 — (—10))/9]Q (4.176)

Benefits < 10+ [(45 — 25)/(21 — 9)]0
(4.177)

Benefits <33 +[(50 — 45)/(30 — 21)]Q
(4.178)

Since most linear programming algorithms
assume the unknown variables are nonnegative
(unless otherwise specified), unrestricted vari-
ables, such as Benefits, can be replaced by the
difference between two nonnegative variables,
such as Pben — Nben. Pben will equal Benefits if
its value is greater than 0. Otherwise —Nben will
equal Benefits. Thus in place of Benefits in
Egs. 4.176-4.178, and those below, one can
substitute Pben — Nben.

Another modeling approach is to divide the
variable Q into parts, ¢;, one for each segment
i of the function. These parts sum to Q. Each g¢;,
ranges from O to the width of the user-defined
segment i. Thus for the piecewise linear benefit
function shown on the right of Fig. 4.28:

4 <9 (4.179)
4y <21 -9 (4.180)
43 <30 — 21 (4.181)
and
O=qi+q@+q3 (4.182)
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The linearized benefit function can now be
written as the sum over all three segments of
each segment slope times the variable g;:

Benefits = —10 + [(25+ 10) /9]¢,
+[(45-25)/(21 = 9)]g2
+[(50 — 45)/(30 — 21)]g3

(4.183)

Since the function being maximized is con-
cave (decreasing slopes as Q increases), we are
assured that each g; + 1 will be greater than 0
only if g; is at its upper limit, as defined by
constraint Eqs. 4.179—-4.181.

A third method is to define unknown weights
w; associated with the breakpoints of the lin-
earized function. The value of Q can be expres-
sed as the sum of a weighted combination of
segment endpoint values. Similarly, the benefits
associated with Q can be expressed as a weighted
combination of the benefits evaluated at the
segment endpoint values. The unknown weights
must also sum to 1. Hence, for this example:

Benefits = (—10)w; + 25w, 4+ 45w3 + 50wy

(4.184)
0 =0w; 4+9wy +21w; + 30wy (4185)
l=w;+wr+w3+wy (4186)

For this method to provide the -closest
approximation of the original nonlinear function,
the solution must include no more than two
nonzero weights and those nonzero weights must
be adjacent to each other. For concave functions
that are to be maximized, this condition will be
met, since any other situation would yield less
benefits.

The solution to the more detailed model
defined by Eqs. 4.174, 4.162-4.172, and either
4.176-4.178, 4.179-4.183, or 4.184-4.186,
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indicates a value of 10 for Q will result in the
maximum net benefits. This flow is to come from
Wellfield B. This more precise solution is iden-
tical to the solution of the simpler model. Clearly
the simpler model could have successfully served

to eliminate Wellfield A from further
consideration.
454 A Review of Linearization

Methods

This section reviews the piecewise linearization
methods just described and some other approa-
ches for incorporating nonlinear conditions into
linear programming models. All of these meth-
ods maintain linearity.

If-then-else conditions

There exist a number of ways “if-then-else” and
“and” and “or” conditions (that is, decision trees)
can be included in linear programming models.
To illustrate some of them, assume X is an
unknown decision variable in a model whose
value may depend on the value of another
unknown decision variable Y. Assume the maxi-
mum value of Y would not exceed Y;,,x and the
maximum value of X would not exceed X,.x.
These upper bounds and all the linear constraints
representing “if-then-else” conditions must not
restrict the values of the original decision variable
Y. Four “if-then-else” (with “and/or’’) conditions
are presented below using additional integer 0.1
variables, denoted by Z. All the X, Y, and Z vari-
ables in the constraints below are assumed to be
unknown. These constraints would be included in
the any linear programming model where the
particular “if-then-else” conditions apply.

These illustrations are not unique. At the
boundaries of the “if” constraints in the examples
below, either of the “then” or “else” conditions
can apply. All variables (X, Y) are assumed
nonnegative. All variables Z are assumed to be a
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binary (0, 1) variables. Note the constraints are
all linear.

(a) If Y <50 then X <10, else X > 15.
Define constraints:

Y<50Z+ Y (1 — 2Z)

Y>50(1 - Z)
X <10Z + Xpax (1 — Z)
X>15(1-2)

b) fY<50then X<Y, else X>Y.
Define constraints:

Y >50Z
Y <50(1 — Z) + Ymax Z
X <Y + X Z

X>Y — You(l — 2)

(c) f Y<20o0rY>80then X =5, else X > 10.
Define constraints:

Y <20Z; +80Z + Youx (1 — Zy — Z5)
Y >20Z, 4+ 80(1 — Z, — Z,)
Z1+2,<1

X<5(Zi+(1 = Zy — 2)) + XmaxZa
X>5(Zi+(1 -2 - 7))

X>102

(d) If20<Y <500r60 <Y <80,then X <5,
else X > 10.
Define constraints:

Y <207, + 502, + 60Z; + 80Z4

Yol =2y — 2o — 73 — 7).
Y >202; + 5075 + 60Z,4

Y 80(1 — 2y — 2y — 7y — Zu)
470+ Zs+Za< 1
X<5(Zy+Zs) + Xmax (1 = Zy — Z4)
X>100(Zy+23) + (1 — Zy — Zo — Zs — Z4))
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Minimizing the absolute value of the dif-
ference between two unknown nonnegative
variables:

Minimize |[X — Y] is equivalent to

Minimize D

subject to
X —-Y<D;
Y -X<D;
X,Y,D>0
or
Minimize (PD + ND)
subject to

X — Y =PD - ND;
PD,ND, X, Y > 0.

Minimizing the maximum or maximizing
the minimum

Let the set of variables be {X;, X5, X5, ...
Minimizing the maximum of {X;, X, X3, ..
is equivalent to

s X}
5 Xa)

Minimize U
subject to

U>X;, j=123,...,n

Maximizing the minimum of {X;, X5, X3, ...,
X, } is equivalent to

Maximize L

subject to

L<X;, j=123,..,n
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Linearization of convex functions for
maximization or concave function for mini-
mization involves 0, 1 binary variables.

Fixed costs in cost functions

C =
variable
cost / unit

=

Consider functions that have fixed compo-
nents if the argument of the function is greater
than 0.

—)>cc;\

Co=
fixed cost if X >0

Cost = Cp+ CX
=0

if X>0,
otherwise.

To include these fixed costs in a LP model,
define

Cost = Cpl + CX
Subject to
X <Mi

where M is the maximum value of X, and / is an
unknown 0, 1 binary variable.
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Minimizing convex functions or maximiz-
ing concave functions.

@
(]
IF I3 S3
S2
I
Sq slopes S
Iy
N 0 a b /
S —> X
Subject to

Maximize G(X) = Maximize B
X =x1+x2+x3

Subject to x1<a
L+S$X>B »<b-a
L+SX>B
L +S3X>B
/variables: X1 X2 X3 X1 X2 X3
slopes: Sy \Y) S3 Sq \Y) S3
segments: 1 2 3 1 2 3

—> F(
—> ()

i’
i’
\Z

Minimize F(X) = S1x1 + Soxs + S3x3
Maximize G(X) = Six1 + Sax2 + S3x3
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/ segments: 1 2 3

E020103x

—> F(

weight:
U7

VVZ VV3 VV4

//

a b ¢

—> X

1 2 3
VV1 VVZ VV3 VV4
3
O
) yd i
0 a

Minimize F(X) = F(0)w; + F(a)w, + F(b)ws + F(c)ws
Maximize G(X) = G(0)w; + G(a)ws + G(b)ws + G(c)wa

Subject to

X=0w;+awr +bws+cwy

wi+wr+ws+wy =1

ing convex functions

—> Goo\

Minimize G(X) 22 5x; + (2022 + 3x2) + (4423 + 2x3)

Subject to

X1 + (4Z2 +x2) + (12Z3 +X3) =X
zs = 0 or 1for all segments s

x <4zy;
Minimizing concave functions or maximiz- X < 82
x3 <99z3;
utntzn=1
segments: 1 2 3
44 52
20 Sp=3
S slopes S¢
0
0 X1 4 XZ 12

E020103y

X
3 X/
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Minimizing or maximizing combined con-
cave—convex functions

X1 XZ x3

Maximize
C(X) = (5z1 4 6x1 + 3x2) + (5323 + 5x3)

Subject to

(x14+x2)+(12z34+x3) =X
x1 <4z

X2 <8z

x3 <9973

u+zun=1

21,23 =0,1

Minimize
C(X) = (521 + 6x1) + (2922 + 3x2 4 5x3)

Subject to

21,22 =0,1.

i+ (@dntxntag) =X
xp <4z

X <8z

x3 <9922

u1+2<1

C(X) = (5z1 +6x1 4+ 3x2) + (— 1723 + 5x3)

Subject to

(XI+X2)+X3 =X
21,23 = 0,1

x1 <4z

X <8z

x3 <9973
u+zn=1;

Minimize
C(X) = (5z1 +6x1) + (1722 + 3x, + 5x3)

Subject to

xi+(@dn+xnt+r) =X
21,22 =0, 1.

x1 <4z

Xy <12z

x3 <99z,

21+ <1
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—> F()

3/
35

22
0
6
5
0 x; 4 X3 12 X3 17 x4
—> X

Maximize or Minimize F(X)

F(X) = (521 +6x1) + (3522 + 3x2) + (3223 —2x3) + 2224

Subject to

X1+ @Bzn+x)+(12z23+x3) + (172 +x4) = X
x1 <4z

X2 <8z

x3 <523

x4 <9974
n+nt+ztz=1;

zs =0,1 for all segments s

4.6 A Brief Review

Before proceeding to other optimization and
simulation methods in the following chapters, it
may be useful to review the topics covered so far.
The focus has been on model development as
well as model solution. Several types of water
resources planning and management problems
have been used to illustrate model development
and solution processes. Like their real-world
counterparts, the example problems all had
multiple unknown decision variables and multi-
ple constraints. Also like their real-world

counterparts, there are multiple feasible solutions
to each of these problems. Hence, the task is to
find the best solution, or a number of near-best
solutions. Each solution must satisfy all the
constraints.

Constraints can reflect physical conditions,
environmental regulations and/or social or eco-
nomic targets. Especially with respect to envi-
ronmental or social conditions and goals, it is
often a matter of judgment to decide what is
considered an objective that is to be minimized
or maximized and what is considered a constraint
that has to be met. For example, do we mini-
mize the costs of meeting specified maximum
levels of pollutant concentrations or minimize
pollutant concentrations without exceeding
specified costs?

Except for relatively simple problems, the use
of these optimization models and methods is
primarily for reducing the number of alternatives
that need to be further analyzed and evaluated
using simulation methods. Optimization is gen-
erally used for preliminary screening—eliminat-
ing inferior alternatives before more detailed
analyses are carried out. Presented were some
approaches to preliminary screening involving
hill-climbing, calculus-based Lagrange multi-
plier, numerical nonlinear programming, discrete
dynamic programming, and linear programming
methods. Each method has its strengths and
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limitations. Both linear and nonlinear program-
ming models are typically solved using software
packages. Many of these software programs are
free and readily available. But before any model
can be solved, it has to be built. Building models
is an art and that is what this chapter has
attempted to introduce.

The example problems used to illustrate these
modeling and model solution methods have been
relatively simple. However, simple applications
such as these can form the foundation of models
of more complex problems, as will be shown in
following chapters.
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Exercises

Engineering economics:

4.1

4.2

43

Consider two alternative water resource
projects, A and B. Project A will cost
$2,533,000 and will return $1,000,000 at
the end of 5 years and $4,000,000 at the
end of 10 years. Project B will cost
$4,000,000 and will return $2,000,000 at
the end of 5 and 15 years, and another
$3,000,000 at the end of 10 years. Pro-
ject A has a life of 10 years, and B has a
life of 15 years. Assuming an interest rate
of 0.1 (10%) per year:

(a) What is the present value of each
project?

(b) What is each project’s annual net
benefit?

(c) Would the preferred project differ if
the interest rates were 0.05?

(d) Assuming that each of these projects
would be replaced with a similar
project having the same time stream of
costs and returns, show that by
extending each series of projects to a
common terminal year (e.g.,
30 years), the annual net benefits of
each series of projects will be same as
found in part (b).

Show that & 2/ (1+7) " = U000 g,

the present value of a series of equal pay-
ments, A, at the end of each year for
T years. What is the impact of an increasing
interest rate over time on the present value?

(a) Show that if compounding occurs at
the end of m equal length periods
within a year in which the nominal
interest rate is r, then the effective
annual interest rate, 7', is equal to

/ r\m
r:(1+—) -1
m

4.4

4.5

4.6
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(b) Show that when compounding is con-
tinuous (i.e., when the number of
periods m — ©0), the compound
interest factor required to convert a
present value to a future value in year
T is 7. [Hinr: Use the fact that

klim (1+1/k)* = e, the base of natural

logarithms. ]

The term “capitalized cost” refers to the
present value PV of an infinite series of
end-of-year equal payments, A. Assuming
an interest rate of r, show that as the ter-
minal period T — oo, PV = A/r.

The internal rate of return of any project or
plan is the interest rate that equals the pre-
sent value of all receipts or income with the
present value of all costs. Show that the
internal rate of return of projects A and B in
Exercise 4.1 are approximately 8 and 6%,
respectively. These are the interest rates r,
for each project, that essentially satisfy the
equation

T

S TR=CH1+71)"=0

t=0

In Exercise 4.1, the maximum annual
benefits were used as an economic crite-
rion for plan selection. The maximum
benefit—cost ratio, or annual benefits divi-
ded by annual costs, is another criterion.
Benefit—cost ratios should be no less than
one if the annual benefits are to exceed the
annual costs. Consider two projects, I
and II:

Project

| I
Annual benefits 20 2
Annual costs 18 1.5
Annual net benefits 2 0.5
Benefit—cost ratio 1.11 1.3
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4.7

4.8
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What additional information is needed
before one can determine which project is
the most economical project?

Bonds are often sold to raise money for
water resources project investments. Each
bond is a promise to pay a specified
amount of interest, usually semiannually,
and to pay the face value of the bond at
some specified future date. The selling
price of a bond may differ from its face
value. Since the interest payments are
specified in advance, the current market
interest rates dictate the purchase price of
the bond.

Consider a bond having a face value of
$10,000, paying $500 annually for
10 years. The bond or “coupon” interest
rate based on its face value is 500/10,000,
or 5%. If the bond is purchased for
$10,000, the actual interest rate paid to the
owner will equal the bond or “coupon”
rate. But suppose that one can invest
money in similar quality (equal risk)
bonds or notes and receive 10% interest.
As long as this is possible, the $10,000,
5% bond will not sell in a competitive
market. In order to sell it, its purchase
price has to be such that the actual interest
rate paid to the owner will be 10%. In this
case, show that the purchase price will be
$6927.

The interest paid by the some bonds,
especially municipal bonds, may be
exempt from state and federal income
taxes. If an investor is in the 30% income
tax bracket, for example, a 5% municipal
tax-exempt bond is equivalent to about a
7% taxable bond. This tax exemption
helps reduce local taxes needed to pay the
interest on municipal bonds, as well as
providing attractive investment opportu-
nities to individuals in high tax brackets.

Lagrange Multipliers

What is the meaning of the Lagrange
multiplier associated with the following
model?

4.9

4.10

4.11

4.12

4.13

Maximize
Subject to:

Benefit(X) — Cost(X)
X<23

Assume water can be allocated to three
users. The allocation, x;, to each use j pro-
vides the following returns: R
(1) = (12x; = x7), R(xz) = (8x; — x3) and
R(x;) = (18x3 — 3x3). Assume that the
objective is to maximize the total return, F
(X), from all three allocations and that the
sum of all allocations cannot exceed 10.
(a) How much would each use like to have?
(b) Show that at the maximum total return
solution the marginal values, 9(R(x;))/9x;,
are each equal to the shadow price or
Lagrange multiplier (dual variable) 4 asso-
ciated with the constraint on the amount of
water available. (c) Finally, without
resolving a Lagrange multiplier problem,
what would the solution be if 15 units of
water were available to allocate to the three
users and what would be the value of the
Lagrange multiplier?

In Exercise 4.9, how would the Lagrange
multiplier procedure differ if the objective
function, F(X), were to be minimized?
Assume that the objective was to minimize
the sum of squared deviations of the actual
allocations x; from some desired or known
target allocations 7T;. Given a supply of
water Q less than the sum of all target al-
locations Tj, structure a planning model
and its corresponding Lagrangian. Will a
global minimum be obtained from solving
the partial differential equations derived
from the Lagrangian? Why?

Using Lagrange multipliers, prove that the
least-cost design of a cylindrical storage
tank of any volume V > 0 has one-third of
its cost in its base and top and two-thirds
of its cost in its side, regardless of the cost
per unit area of its base or side. (It is these
types of rules that end up in handbooks in
engineering design.)

An industrial firm makes two products,
A and B. These products require water and
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other resources. Water is the scarce
resource—they have plenty of other nee-
ded resources. The products they make are
unique, and hence they can set the unit
price of each product at any value they
want to. However experience tells them
that the higher the unit price for a product,
the less amount of that product they will
sell. The relationship between unit price
and quantity that can be sold is given by
the following two demand functions.
Assume for simplicity that the unit price
for product A is (8§ — A) and for product B
is (6 — 1.5B).

Unit
price

4.14

4.15

Unit
Price
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(d) What is the value of the dual variable,
or shadow price, associated with the
10 units of available water?

Dynamic programming

Solve for the optimal integer allocations x;,
X, and x3 for the problem defined by
Exercise 4.9 assuming the total available
water is 3 and 4. Also solve for the optimal
allocation policy if the total water available
is 7 and each x; must not exceed 4.
Consider a three-season reservoir opera-
tion problem. The inflows are 10, 50 and
20 in seasons 1, 2, and 3, respectively.

6-1.5B

Quantity of product A

(a) What are the amounts of A and B, and
their unit prices, that maximize the
total revenue obtained?

Suppose the total amount of A and
B could not exceed some amount
T*, What are the amounts of A and
B, and their unit prices, that maximize
total revenue, if

(b)

i) T"* =10

(i) ™™™ =5
Water is needed to make each unit of
A and B. The production functions
relating the amount of water X, nee-
ded to make A, and the amount of
water Xp needed to make B, are
A = 0.5Xy, and B = 0.25Xj,
respectively.
Find the amounts of A and B and their
unit prices that maximize total revenue
assuming the total amount of water
available is 10 units.

(©

4.16

Quantity of product B

Find the operating policy that minimizes
the sum of total squared deviations from a
constant storage target of 20 and a con-
stant release target of 25 in each of the
three seasons. Develop a discrete dynamic
programming model that considers only 4
discrete storage values: 0, 10, 20 and 30.
Assume the releases cannot be less than 10
or greater than 40. Show how the model’s
recursive equations change depending on
whether the decisions are the releases or
the final storage volumes. Verify the
optimal operating policy is the same
regardless of whether the decision vari-
ables are the releases or the final storage
volumes in each period. Which model do
you think is easier to solve? How would
each model change if more importance
were given to the desired releases than to
the desired storage volumes?

Show that the constraint limiting a reser-
voir release, r,, to be no greater than the
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initial storage volume, s,, plus inflow, i, is
redundant to the continuity equation
S+, — 1 =S841.

4.17 Develop a general recursive equation for a
forward-moving dynamic programming
solution  procedure for a  single
reservoir-operating problem. Define all
variables and functions used. Why is this
not a very useful approach to finding a
reservoir-operating policy?

4.18 The following table provides estimates for
the recent values of the costs of additional
wastewater treatment plant capacity nee-
ded at the end of each 5-year period for the
next 20 years. Find the capacity expansion
schedule that minimizes the present values
of the total future costs. If there is more
than one least-cost solution, indicate
which one you think is better, and why?

Discounted cost of Total required
additional capacity capacity at end of
Units of additional ~ Period
capacity

Period 2 4 6 8 10

years
1 1-5 12 15 18 23 26 2
2 6 8 11 13 15

10

3 11- 6 8 8
15

4 16—~ 4 10
20

The cost in each period ¢ must be paid at
the beginning of the period. What was the
discount factor used to convert the costs at
the beginning of each period ¢ to present
value costs shown above? In other words
how would a cost at the beginning of
period ¢ be discounted to the beginning of
period 1, given an annual interest rate of r?
(Only the algebraic expression of the dis-
count factor is asked, not the numerical
value of r.)

4 An Introduction to Optimization Models and Methods

4.19 Consider a wastewater treatment plant in

which it is possible to include five differ-
ent treatment processes in series. These
treatment processes must together remove
at least 90% of the 100 units of influent
waste. Assuming the R; is the amount of
waste removed by process i, the following
conditions must hold:

20<R; <30
0<R, <30
0<R;<10
0< Ry <20
0<Rs<30

(a) Write the constrained optimization-
planning model for finding the
least-cost combination of the removals
R; that together will remove 90% of
the influent waste. The cost of the
various discrete sizes of each unit
process i depend upon the waste
entering the process i as well as the
amount of waste removed, as indi-
cated in the table below.

Process i 1 2 3 4 5
Influent, I; Removal, R; ' Annual cost = C{(I;, R;)
100 20 5

100 30 10

80 10 3 3 1

80 20 9 2

80 30 13

70 10 4 5 2

70 20 10 3

70 30 15

60 10 6 3
60 20 6
60 30 9
50 10 7 3 4
50 20 5 8
50 30 10

(continued)
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Process i 1 2 3 4 5
Influent, I; Removal, R; = Annual cost = C{(I;, R;)
40 10 8 5 5
40 20 7 12
40 30 18
30 10 8 8
30 20 10 12
20 10 8

(b) Draw the dynamic programming net-
work and solve this problem by
dynamic programming. Indicate on
the network the calculations required
to find the least-cost path from state
100 at stage 1 to state 10 at stage 6
using both forward- and backward-
moving dynamic programming solu-
tion procedures.

(c) Could the following conditions be
included in the original dynamic pro-
gramming model and still be solved
without requiring R, to be 0 in the first
case and R5 to be 0 in the second case?

(l) R4=0ifR3=0, or
(i) Rs=0if R, < 20.

4.20 The city of Eutro Falls is under a court order

to reduce the amount of phosphorus that
which it discharges in its sewage to Lake
Algae. The city presently has three
wastewater treatment plants. Each plant
i currently discharges P; kg/day of phos-
phorus into the lake. Some or all plants must
reduce their discharges so that the total for
the three plants does not exceed P kg/day.
Let X; be the fraction or percent of the
phosphorus removed by additional treat-
ment at plant i, and the Ci(X;) the cost of
such treatment ($/year) at each plant i.

(a) Structure a planning model to deter-
mine the least-cost (i.e., a cost effec-
tive) treatment plant for the city.

(b) Restructure the model for the solution
by dynamic programming. Define the

4.21

4.22

4.23
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stages, states, decision variables, and
the recursive equation for each stage.

(c) Now assume P;=20; P,=15;
P; =25; and P = 20. Make up some
cost data and check the model if it
works.

Find (draw) a rule curve for operating a
single reservoir that maximizes the sum of
the benefits for flood control, recreation,
water supply and hydropower. Assume
the average inflows in four seasons of a
year are 40, 80 60, 20, and the active
reservoir capacity is 100. For an average
storage S and for a release of R in a sea-
son, the hydropower benefits are 2 times
the square root of the product of S and R,
2(SR)*, and the water supply benefits are
3R%7 in each season. The recreation ben-
efits are 40 — (70 — S)* in the third sea-
son. The flood control benefits are
20 — (40 — S)2 in the second season.
Specify the dynamic programming recur-
sion equations you are using to solve the
problem.

How would the model defined in Exercise
4.21 change if there were a water user
upstream of this reservoir and you were to
find the best water-allocation policy for
that user, assuming known benefits asso-
ciated with these allocations that are to be
included in the overall maximum benefits
objective function?

Suppose there are four water users along a
river who benefit from receiving water
from the river. Each has a water target,
i.e., each expects and plans for a specified
amount. These known water targets are W
(1), W(2), W(3), and W(4) for the four
users, respectively. Show how dynamic
programming can be used to find two
allocation policies. One is to be based on
minimizing the maximum deficit deviation
from any target allocation. The other is to
be based on minimizing the maximum
percentage deficit from any
target allocation.
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4.24

4.25

4.26

4.27

Gradient “Hill-climbing” methods
Solve Exercise 4.13(b) using hill-climbing
techniques and assuming discrete integer
values and 7" = 5. For example, which
product would you produce if you could
make only 1 unit of either A or B? If you
could make another unit of A or B, which
would you make? Continue this process
up to 5 units of products A and/or B.
Under what conditions will hill-climbing
methods for maximization or minimiza-
tion not work?

Linear and nonlinear programming
Consider the industrial firm that makes
two products A and B as described in
Exercise 4.13(b). Using Lingo (or any
other program you wish):

(a) Find the amounts of A and B and their
unit prices that maximize total revenue
assuming the total amount of water
available is 10 units.

‘What is the value of the dual variable,
or shadow price, associated with the
10 units of available water?

Suppose the demand functions are not
really certain. How sensitive are the
allocations of water to changes in the
parameter values of those functions?
How sensitive are the allocations to
the parameter values in the production
functions?

(b)

(©

Assume that there are m industries or
municipalities that discharge their wastes

4 An Introduction to Optimization Models and Methods

qj

o
C;

into a river. Denote the discharge sites by
the subscript i and let W; be the kg of
waste discharged into the river each day at
those sites i. To improve the river water
quality downstream, wastewater treatment
plants may be required at each site i. Let x;
be the fraction of waste removed by
treatment at each site i. Develop a model
for estimating how much waste removal is
required at each site to maintain accept-
able water quality in the river at a mini-
mum total cost. Use the following
additional notation:

decrease in quality at site j per unit of waste
discharged at site i

quality at site j that would result if all
controlled upstream discharges were
eliminated (i.e., W; = W, = 0)

minimum acceptable quality at site j

cost per unit (fraction) of waste removed at
site 1.

4.28 Assume that there are two sites along a

stream, { = 1, 2, at which waste (BOD) is
discharged. Currently, without any
wastewater treatment, the quality (DO), g,
and g3, at each of sites 2 and 3 is less than
the minimum desired, Q, and Q3, respec-
tively. For each unit of waste removed at
site i upstream of site j, the quality
improves by A;. How much treatment is
required at sites 1 and 2 that meets the
standards at a minimum total cost?

W
Site 3
l Site 2
Stream
Site 1 |
Park
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4.29

4.30

Following are the necessary data:

cost per unit fraction of waste treatment at
site 7 (both C; and C, are unknown but for
the same amount of treatment, whatever that
amount, C; > C,)

decision variables, unknown waste removal
fractions at sites i = 1, 2

Ap=1/20 W; =100 Q,=6
Ap=1/40 Wo=75 0, =4
Ay =1/30 ¢,=3 =1

Define a linear programming model for
finding the tradeoff between active storage
capacity and the maximum percentage
deviation from a known target storage
volume and a known target release in each
period. How could the solution of the
model be used to define a reservoir policy?
Consider the possibility of building a
reservoir upstream of three demand sites
along a river.

e

The net benefits derived from each use
depend on the reliable amounts of water
allocated to each use. Letting x;; be the
allocation to use i in period ¢, the net
benefits for each period ¢ equal

1. 6x;, — X3,
2. Txo, — 1.5%3,
3. 8x3, — 0.5x3,

Assume the average inflows to the
reservoir in each of four seasons of the
year equal 10, 2, 8, 12.

(a) Find the tradeoff between the yield
(the expected release that can be

(b)

(©)

(d)

(e)

()

171

guaranteed in each season) and the
reservoir capacity.

Find the tradeoff between the yield
and the maximum total net benefits
that can be obtained from allocating
that yield among the three users.
Find the tradeoff between the reservoir
capacity and the total net benefits one
can obtain from allocating the total
releases, not just the reliable yield, to
the downstream users.

Assuming a reservoir capacity of 7,
and dividing the release into integer
increments of 2 (i.e., 2, 4, 6 and 8),
using linear programming, find the
optimal operating policy. Assume the
maximum release cannot exceed 8§,
and the minimum release cannot be
less than 2. How does this solution
differ from that obtained using
dynamic programming?

If you were maximizing the total net
benefit obtained from the three users
and if the water available to allocate to

e

the three users were 15 in a particular
time period, what would be the value
of the Lagrange multiplier or dual
variable associated with the constraint
that you cannot allocate more than 15
to the three uses?

There is the possibility of obtaining
recreational benefits in seasons 2 and
3 from reservoir storage. No recre-
ational benefits can occur in seasons 1
and 4. To obtain these benefits facili-
ties must be built, and the question is
at what elevation (storage volume)
should they be built. This is called the
recreational storage volume target.
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4.31

4.32

4 An Introduction to Optimization Models and Methods

Recreational benefits in each recre-
ation season equal 8 per unit of stor-
age target if the actual storage equals
the storage target. If the actual storage
is less than the target the losses are 12
per unit deficit—the difference
between the target and actual storage
volumes. If the actual storage volume
is greater than the target volume the
losses are 4 per unit excess. What is
the reservoir capacity and recreation
storage target that maximizes the
annual total net benefits obtained from
downstream allocations and recreation
in the reservoir less the annual cost of
the reservoir, 3K'>, where K is the
reservoir capacity?

In (f) above, suppose the allocation
benefits and net recreation benefits
were given weights indicating their
relative importance. What happens to
the relationship between capacity
K and recreation target as the total
allocation benefits are given a greater
weight in comparison to recreation net
benefits?

(2

Using the network representation of the
wastewater treatment plant design problem
defined in Exercise 4.19, write a linear
programming model for defining the
least-cost sequence of unit treatment pro-
cess (i.e., the least-cost path through the
network). [Hint: Let each decision variable
x;; indicate whether or not the link between
nodes (or states) i and j connecting two
successive stages is on the least-cost or
optimal path. The constraints for each
node must ensure that what enters the
node must also leave the node.]

Two types of crops can be grown in par-
ticular irrigation area each year. Each unit
quantity of crop A can be sold for a price
P, and requires W, units of water, L, units
of land, F4 units of fertilizer, and H, units
of labor. Similarly, crop B can be sold at a
unit price of Pg and requires Wp, Ly, Fp
and Hp units of water, land, fertilizer, and

labor, respectively, per unit of
crop. Assume that the available quantities
of water, land, fertilizer, and labor are
known, and equal W, L, F, and H,
respectively.

(a) Structure a linear programming model
for estimating the quantities of each of
the two crops that should be produced
in order to maximize total income.

(b) Solve the problem graphically, using
the following data:
Requirements
per unit of
Resource Crop Crop Maximum available
A B resources
Water 2 3 60
Land 5 2 80
Fertilizer 3 2 60
Labor 1 2 40
Unit 30 25
price
(c) Define the meaning of the dual vari-

ables, and their values, associated with
each constraint.

(d) Write the dual model of this problem
and interpret its objective and
constraints.

(e) Solve the primal and dual models using
an existing computer program, and
indicate the meaning of all output data.
Assume that one could purchase
additional water, land, fertilizer, and
labor with capital that could be bor-
rowed from a bank at an annual
interest rate r. How would this
opportunity alter the linear program-
ming model? The objective continues
to be a maximization of net income.
Assume there is a maximum limit on
the amount of money that can be
borrowed from the bank.

Assume that the unit price P; of crop
Jj 1is a decreasing linear function
(P} —bjxj) of the quantity, x; pro-
duced. How could the linear model be

()

9]
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4.33
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4.34

Task A:

restructured also as to identify not
only how much of each crop to pro-
duce, but also the unit price at which
each crop should be sold in order to
maximize total income?

Using linear programming model, derive
an annual storage-yield function for a
reservoir at a site having the following
record of annual flows:

Flow Q, Year y Flow O,
5 9 3

7 10 6

8 11 8

4 12 9

3 13 3

3 14 4

2 15 9

1

(a) Find the values of the storage capacity
required for yields of 2, 3, 3.5, 4, 4.5,
and 5.

(b) Develop a flow chart defining a pro-
cedure for finding the yields for vari-
ous increasing values of K.

Water resources planning usually involves
a set of separate tasks. Let the index i de-
note each task, and H; the set of tasks that
immediately precede task i. The duration
of each task i is estimated to be d;.

(a) Develop a linear programming model
to identify the starting times of tasks
that minimizes the time, 7, required to
complete the total planning project.

(b) Apply the general model to the fol-
lowing planning project:

Determine planning objectives and
stakeholder interests. Duration:
4 months.

Task B:

Task C:

Task E:

Task F:

\>(©
O\ o

4.35 In Exercise 4.34 suppose the project is
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Determine structural and nonstructural
alternatives  that will influence
objectives. Duration: 1 month.
Develop an optimization model for
preliminary screening of alternatives
and for estimating tradeoffs among
objectives. Duration: 1 month.
Identify data requirements and collect
data. Duration: 2 months.

Develop a data management system
for the project. Duration: 3 months.
Develop an interactive shared vision
simulation model with the
stakeholdes. Duration: 2 Months.
Work with stakeholders in an effort to
come to a consensus (a shared vision)
of the best plan. Duration: 4 months.
Prepare, present and submit a report.
Duration: 2 months.

()

penalized if its completion time exceeds a
target 7. The difference between 14 months
and 7 months is A, and the penalty is P(A).
You could reduce the time it takes to
complete task E by one month at a cost of
$200, and by two months at a cost of $500.
Similarly, suppose the cost of task A could
be reduced by a month at a cost of $600 and
two months at a cost of $1400. Construct a
model to find the most economical project
completion time. Next modify the linear
programming model to find the minimum
total added cost if the total project time is to
be reduced by 1 or 2 months. What is that
added cost and for which tasks?
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4.36

4.37

4.38

4 An Introduction to Optimization Models and Methods

Solve the reservoir operation problem
described in Exercise 4.15 using linear
programming. If the reservoir capacity is
unknown, show how a cost function (that
includes fixed costs and economies of
scale) for the reservoir capacity could be
included in the linear programming model.
An upstream reservoir could be built to
serve two downstream users. Each user
has a constant water demand target. The
first user’s target is 30; the second user’s
target is 50. These targets apply to each of
6 within-year seasons. Find the tradeoff
between the required reservoir capacity
and maximum deficit to any user at any
time, for an average year. The average
flows into the reservoir in each of the six
successive seasons are: 40, 80, 100, 130,
70, 50.

Two groundwater well fields can be used
to meet the water demands of a single
user. The maximum capacity of the A well
field is 15 units of water per period, and
the maximum capacity of the B well field
is 10 units of water per period. The annual
cost of building and operating each well
field, each period, is a function of the
amount of water pumped and transported
from that well field. Three sets of cost
functions are shown below: Construct a
LP model and use it to define and then plot
the total least-cost function and the asso-
ciated individual well field capacities
required to meet demands from O to 25,
assuming cost functions 1 and 2 apply to
well fields A and B, respectively. Next
define another least-cost function and
associated capacities assuming cost func-
tions 3 and 4 apply to A and B, respec-
tively. Finally define a least-cost function
and associated capacities assuming well
field cost functions 5 and 6 apply. You can
check your model results just using com-
mon sense—the least-cost functions
should be obvious, even without using
optimization.

10 5

15

20

4.39

4.40

Resources

Water

Labor

Land

Yield $/ha

g F--

Referring to Exercise 4.38 above, assume
cost functions 5 and 6 represent the cost of
adding additional capacity to well fields
A and B, respectively, in any of the next five
5-year construction periods, i.e., in the next
25 years. Identify and plot the least-cost
capacity expansion schedule (one that
minimizes the total present value of current
and future expansions), assuming demands
of 5, 10, 15, 20 and 25 are to be met at the
end of years 5, 10, 15, 20 and 25, respec-
tively. Costs, including fixed costs, of ca-
pacity expansion in each construction
period have to be paid at the beginning of
the construction period. Determine the
sensitivity of your solution to the interest
rate used to compute present value.
Consider a crop production problem
involving three types of crops. How many
hectares of each crop should be planted to
maximize total income?

Max limits Resource requirements

Crops:  Corn | Wheat = Oats
1000/week 3.0 1.0 L5 units/week/ha
300/week 0.8 0.2 0.3 person

h/week/ha
625 ha
400

200 250



Exercises

Show a graph that identifies the tradeoffs
among crops that can be made without reducing
the total income.

4.41

4.42

Releases from a reservoir are used for
water supply or for hydropower. The
benefit per unit of water allocated to
hydropower is BH and the benefit per unit
of water allocated to water supply is BW.
For any given release the difference
between the allocations to the two uses
cannot exceed 50% of the total amount of
water available. Show graphically how to
determine the most profitable allocation of
the water for some assumed values of BH
and BW. From the graph identify which
constraints are binding and what their
“dual prices” mean (in words).

Suppose there are four water users along a
river who benefit from receiving water.
Each has a known water target, i.e., each
expects and plans for a specified amount.
These known water targets are W, W,,
W3, and W, for the four users, respec-
tively. Find two allocation policies. One is
to be based on minimizing the maximum
deficit deviation from any target alloca-
tion. The other is to be based on mini-
mizing the maximum percentage deficit
from any target allocation.

Deficit allocations are allocations that are
less than the target allocation. For example
if a target allocation is 30 and the actual
allocation is 20, the deficit is 10. Water in
excess of the targets can remain in the
river. The policies are to indicate what the
allocations should be for any particular
river flow Q. The policies can be expres-
sed on a graph showing the amount of
Q on the horizontal axis, and each user’s
allocation on the vertical axis.

Create the two optimization models that
can be used to find the two policies and
indicate how they would be used to define

4.43

4.44
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the policies. What are the unknown vari-
ables and what are the known variables?
Specify the model in words as well as
mathematically.

In Indonesia there exists a wet season
followed by a dry season each year. In one
area of Indonesia all farmers within an
irrigation district plant and grow rice dur-
ing the wet season. This crop brings the
farmer the largest income per hectare; thus
they would all prefer to continue growing
rice during the dry season. However, there
is insufficient water during the dry season
to irrigate all 5000 ha of available irriga-
ble land for rice production. Assume an
available irrigation water supply of
32 X 10° m® at the beginning of each dry
season, and a minimum requirement of
7000 m’/ha for rice and 1800 m*/ha for
the second crop.

(a) What proportion of the 5000 ha
should the irrigation district manager
allocate for rice during the dry season
each year, provided that all available
hectares must be given sufficient water
for rice or the second crop?

Suppose that crop production func-
tions are available for the two crops,
indicating the increase in yield per
hectare per m> of additional water, up
to 10, 000 m’/ha for the second
crop. Develop a model in which the
water allocation per hectare, as well as
the hectares allocated to each crop, is
to be determined, assuming a specified
price or return per unit of yield of each
crop. Under what conditions would
the solution of this model be the same
as in part (a)?

(b)

Along the Nile River in Egypt, irrigation
farming is practiced for the production of
cotton, maize, rice, sorghum, full and short
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berseem for animal production, wheat,
barley, horsebeans, and winter and summer
tomatoes. Cattle and buffalo are also pro-
duced, and together with the crops that
require labor, water. Fertilizer, and land
area (feddans). Farm types or management
practices are fairly uniform, and hence in
any analysis of irrigation policies in this
region this distinction need not be made.
Given the accompanying data develop a
model for determining the tons of crops and
numbers of animals to be grown that will
maximize (a) net economic benefits based
on Egyptian prices, and (b) net economic
benefits based on international prices.
Identify all variables used in the model.
Known parameters:

miscellaneous cost of land preparation per
feddan

Egyptian price per 1000 tons of crop i
international price per 1000 tons of crop i
value of meat and dairy production per
animal

annual labor cost per worker

cost of P fertilizer per ton

cost of N fertilizer per ton

yield of crop i, tons/feddan

feddans serviced per animal

tons straw equivalent per ton of berseem
carryover from winter to summer
berseem requirements per animal in winter
straw yield from wheat, tons per feddan
straw yield from barley, tons per feddan
straw requirements per animal in summer
N fertilizer required per feddan of crop i
P fertilizer required per feddan of crop i
labor requirements per feddan in month m,
man-days

water requirements per feddan in month
m, 1000 m’

land requirements per month, fraction
(1 = full month)

Required Constraints (assume known
resource limitations for labor, water, and
land):

4 An Introduction to Optimization Models and Methods
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(a) Summer and winter fodder (berseem)
requirements for the animals.
Monthly labor limitations.

Monthly water limitations.

Land availability each month.
Minimum number of animals required
for cultivation.

Upper bounds on summer and winter
tomatoes (assume these are known).
Lower bounds on cotton areas (as-

sume this is known).

(b)
(©)
(d)
(e)

()

(2)

Other possible constraints:

(@)
(b)
(©)
(d

Crop balances.
Fertilizer balances.
Labor balance.
Land balance.

In Algeria there are two distinct cropping
intensities, depending upon the availability
of water. Consider a single crop that can be
grown under intensive rotation or exten-
sive rotation on a total of A hectares.
Assume that the annual water requirements
for the intensive rotation policy are
16,000 m> per ha, and for the extensive
rotation policy they 4000 m® per ha. The
annual net production returns are 4000 and
2000 dinars, respectively. If the total water
available is 320,000 m3, show that as the
available land area A increases, the rotation
policy that maximizes total net income
changes from one that is totally intensive to
one that is increasingly extensive.

Would the same conclusion hold if instead
of fixed net incomes of 4000 and
2000 dinars per hectares of intensive and
extensive rotation, the net income depen-
ded on the quantity of crop produced?
Assuming that intensive rotation produces
twice as much produced by extensive
rotation, and that the net income per unit
of crop Y is defined by the simple linear
function 5 — 0.05 Y, develop and solve a
linear programming model to determine
the optimal rotation policies if A equals
20, 50, and 80. Need this net income or
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price function be linear to be included in a
linear programming model?

Current stream quality is below desired
minimum levels throughout the stream in
spite of treatment at each of the treatment
plant and discharge sites shown below.
Currently effluent standards are not being

4.46

met, and minimum desired streamflow
concentrations can be met by meeting
effluent standards. All current wastewater
discharges must undergo additional treat-
ment. The issue is where additional treat-
ment is to occur and how much.

Develop a model to identify cost-effective
options for meeting effluent standards
where ever wastewater is discharged into
the stream. The decisions variables include

Open Access This chapter is distributed under the terms
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4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
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the amount of wastewater to treat at each
site and then release to the river. Any
wastewater at any site that is not under-
going additional treatment can be piped to
other sites. Identify other issues that could
affect the eventual decision.

(@) Wastewater Treatment Plant

Possible pipeline for wastewater effluent.

Assume known current wastewater flows at site
i=gq,

Additional treatment to meet effluent standards
cost = a; +b;(D;)" where D; is the total
wastewater flow undergoing additional treatment
at site 7 and ¢; < 1.

Pipeline and pumping for each pipeline segment
costs approximately a; + B(g;).

where g;; is pipeline flow between adjacent sites
iandjand y < 1.

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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Clearly, all model outputs depend on model
inputs. The optimization and simulation models
discussed in the previous chapters are no
exception. This chapter introduces some alter-
native modeling approaches that depend on
observed data. These approaches include artifi-
cial neural networks and various evolutionary
models. The chapter ends with some qualitative
modeling. These data-driven models can serve as
substitutes for more process-based models in
applications where computational speed is criti-
cal or where the underlying relationships are
poorly understood or too complex to be easily
incorporated into calculus-based, linear, nonlin-
ear, or dynamic programming models. Evolu-
tionary algorithms involve random searches
based on evolutionary or biological processes for
finding the values of parameters and decision
variables that best satisfy system performance
criteria. Evolutionary algorithms are popular
methods for analyzing systems that require
complex simulation models to determine values
of performance measures. Qualitative modeling
approaches are useful when performance mea-
sures are expressed qualitatively, such as “I want

© The Author(s) 2017

a reliable supply of clean water at a reasonable
cost,” where there can be disagreements among
different stakeholders and decision makers with
respect to specifying just how reliable, how
clean, and how affordable.

5.1 Introduction

Most models used for water resources planning
and management describe, in mathematical
terms, the interactions and processes that take
place among the various components of the
system. These mechanistically or process-based
models usually contain parameters whose values
are determined from observed data during model
calibration. These types of models are contrasted
to what are typically called “black-box” models,
or statistical models. Such models do not
describe physical processes. They attempt to
convert observed inputs (e.g., rainfall and runoff,
inflows to a reservoir, pollutants entering a
wastewater treatment plant or effluent concen-
trations discharged to a river) to observed outputs
(e.g., runoff, reservoir releases, pollutant
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concentrations) using any set of mathematical
equations or expressions that does the job. One
type of such models is regression.

Regression equations, such as of the forms

Output variable value = a + b(input variable value)
(5.1)

Output variable value = a + b(input variable value)“

(5.2)

Output variable value
= a+ b, (input variable; value)“" (5.3)

+ by (input variable,value)

are examples of such data-fitting or statistical
models.

They depend on observed inputs and observed
outputs for the estimation of the values of their
parameters (a, b, ¢, etc.) and for further refine-
ment of their structure. They lack an explicit,
well-defined representation of the processes
involved in the transformation of inputs to
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outputs. While these statistical models are better
at interpolating within the range of data used to
calibrate them, rather than extrapolating outside
that range (as illustrated in Fig. 5.1), many have
proven quite successful in representing complex
physical systems.

Other examples of data-driven models are
based on biological principles and concepts.
These are a class of probabilistic search proce-
dures known as evolutionary algorithms (EAs).
Such algorithms include genetic algorithms
(GAs), genetic or evolutionary programming (GP
or EP), and evolutionary strategy (ES). Each of
these methods has many varieties but all use
computational methods based on natural evolu-
tionary processes and learning. Perhaps the most
robust and hence the most common of these
methods are genetic algorithms and their vari-
eties used to find the values of parameters and
variables that best satisfy some objective. Alter-
natively, an extension of regression is artificial
neural networks (ANN). The development and
application of black-box models like GA, GP,

y == true relation E(y/x)
= model y(x)

— density

O data

unsupported area

Fig. 5.1 Data-fitting models are able to estimate rela-
tively accurately within their calibrated ranges, but not
outside those ranges. The bottom curve represents the

relative density of data used in model calibration. The
arrows point to where the model does not predict well
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and ANNs emulate larger, deterministic, process-
oriented models. Once calibrated, their use may
be advantageous if and when it is quicker to use
them to obtain the information needed rather than
using process-oriented models that typically take
longer to solve. Process-oriented models are
sometimes used to calibrate artificial neural net-
works, which are then used to more quickly
explore and evaluate the range of solution out-
puts associated with varying inputs.

Examples of such situations where multiple
solutions of a model must be obtained include
sensitivity or uncertainty analysis, scenario
evaluations, risk assessment, optimization,
inverse modeling to obtain parameter values
given the values of the decision variables, and/or
when model runs must be extremely fast, as for
rapid assessment and decision support systems,
real-time predictions/management/control, and
so on. Examples of the use of data-fitting models
for model emulation are given in the next several
sections.

Genetic algorithms and genetic programming
are automated, domain-independent methods for
evolving solutions to existing models or for
producing new models that emulate actual sys-
tems, such as rainfall-runoff relationships in a
watershed, wastewater removal processes in a
treatment plant, or discharges of water from a
system of natural lakes, each subject to random
inputs. Search methods such as genetic algo-
rithms and genetic programming are inspired by
our understanding of biology and natural evolu-
tion. They start initially with a number of sets of
randomly created values of the unknown vari-
ables or a number of black-box models, respec-
tively. The variable values or structure of each of
these models are progressively improved over a
series of generations. The evolutionary search
uses the Darwinian principal of “survival of the
fittest” and is patterned after biological opera-
tions including crossover (sexual recombination),
mutation, gene duplication, and gene deletion.

Artificial neural networks are distributed,
adaptive, generally nonlinear networks built from
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many different processing elements (PEs) (Prin-
cipe et al. 2000). Each processing element
receives inputs from other processing elements
and/or from itself. The inputs are scaled by
adjustable parameters called weights. The pro-
cessing elements sum all of these weighted
inputs to produce an output that is a nonlinear
(static) function of the sum. Learning (calibra-
tion) is accomplished by adjusting the weights.
The weights are adjusted directly from the
training data (data used for calibration) without
any assumptions about the data’s statistical dis-
tribution or other characteristics (Hagan et al.
1996; Hertz et al. 1991).

The following sections are intended to pro-
vide some background helpful to those who may
be selecting one among all the available com-
puter codes for implementing a genetic algo-
rithm, genetic program, or artificial neural
network.

5.2 Artificial Neural Networks

5.2.1 The Approach

Before the development of digital computers, any
information processing necessary for thinking
and reasoning was carried out in our brains.
Much of it still is. Brain-based information pro-
cessing continues today (e.g., see Fig. 2.1) and
will continue in the future even given our con-
tinually improving electronic digital processing
capabilities. While recent developments in
information technology (IT) have mastered and
outperformed much of the information process-
ing one can do just using brain power, IT has not
mastered the reasoning power of our brains.
Perhaps because of this, some computer scien-
tists have been working on creating information
processing devices that mimic the human brain.
This has been termed neurocomputing. It uses
ANNs representing simplified models of the
brain. In reality, it is just a more complex type of
regression or statistical (black-box) model.
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ORLTRY)

input layer

middle layer

E020723b

output layer

Fig. 5.2 A typical multilayer artificial neural network showing the input layer for ten different inputs, the hidden layer

(s), and the output layer having three outputs

An example of the basic structure of an ANN
is shown in Fig. 5.2. There are a number of input
layer nodes on the left side of the figure and a
number of output layer nodes on the right. The
middle column(s) of nodes between these input
and output nodes are called hidden layers. The
number of hidden layers and the number of
nodes in each layer are two of the design
parameters of any ANN. Most applications
require networks that contain at least these three
types of layers:

e The input layer consists of nodes that receive
an input from the external environment.
These nodes do not perform any transforma-
tions upon the inputs but just send their
weighted values to the nodes in the immedi-
ately adjacent, usually “hidden,” layer.

e The hidden layer(s) consist(s) of nodes that
typically receive the transferred weighted
inputs from the input layer or previous hidden
layer, perform their transformations on it, and

pass the output to the next adjacent layer,
which can be another hidden layer or the
output layer.

e The output layer consists of nodes that
receive the hidden layer output and send it to
the user.

The ANN shown in Fig. 5.2 has links only
between nodes in immediately adjacent layers or
columns and is often referred to as a multilayer
perceptron (MLP) network, or a feedforward
(FF) network. Other architectures of ANNSs,
which include recurrent neural networks (RNN),
self-organizing feature maps (SOFMs), Hopfield
networks, radial basis function (RBF) networks,
support vector machines (SVMs), and the like,
are described in more detail in other publications
(for example, Haykin 1999; Hertz et al. 1991).

Essentially, the strength (or weight) of the
connection between adjacent nodes is a design
parameter of the ANN. The output values O; that
leave a node j on each of its outgoing links are
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multiplied by a weight, w;. The input I, to each

node k in each middle and output layer is the sum

of each of its weighted inputs, w;0;, from all

nodes j providing inputs (linked) to node k.
Input value to node k:

Ik = Z WjOj

Again, the sum in Eq. 5.4 is over all nodes
J providing inputs to node k.

At each node k of hidden and output layers,
the input I, is an argument to a linear or nonlinear
function fi(I; + ), which converts the input I to
output O,. The variable 6§, represents a bias or
threshold term that influences the horizontal
offset of the function. This transformation can
take on a variety of forms. A commonly used
transformation is a sigmoid or logistic function as
defined in Eq. 5.5 and graphed in Fig. 5.3.

(5.4)

O = 1/[1 4 exp{—(Ic + 0i)}] (5.5)
The process of converting inputs to outputs at
each hidden layer node is illustrated in Fig. 5.4.
The same process also happens at each output
layer node.

The design issues in artificial neural networks
are complex and are major concerns of ANN
developers. The number of nodes in the input as
well as in the output layer is usually predeter-
mined from the problem to be solved. The
number of nodes in each hidden layer and the
number of hidden layers are calibration parame-
ters that can be varied in experiments focused on

1.0

0.5

0.0
<— O

Fig. 5.3 The sigmoid or logistic threshold function with
threshold 6y
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O
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0

output:
Ok = f(Ix+0y)

Fig. 5.4 A middle-layer node k converting input values
to an output value using a nonlinear function f (such as
defined by Eq. 5.5) in a multilayer ANN

getting the best fit of observed and predicted
output data based on the same input data. These
design decisions, and most importantly the
determination of the values of the weights and
thresholds of each connection, are “learned”
during the “training” of the ANN using prede-
fined (or measured) sets of input and output data.

Some of the present-day ANN packages pro-
vide options for building networks. Most provide
fixed network layers and nodes. The design of an
ANN can have a significant impact on its
data-processing capability.

There are two major connection topologies
that define how data flows between the input,
hidden, and output nodes. These main categories
are:

e Feedforward networks in which the data
flow through the network in one direction
from the input layer to the output layer
through the hidden layer(s). Each output
value is based solely on the current set of
inputs. In most networks, the nodes of one
layer are fully connected to the nodes in the
next layer (as shown in Fig. 5.2); however,
this is not a requirement of feedforward
networks.

® Recurrent or feedback networks in which, as
their name suggests, the data flow not only in
one direction but in the opposite direction as
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well for either a limited or a complete part of
the network. In recurrent networks, informa-
tion about past inputs is fed back into and
mixed with inputs through recurrent (feed-
back) connections. The recurrent types of
artificial neural networks are used when the
answer is based on current data as well as on
prior inputs.

Determining the best values of all the weights
is called training the ANN. In a so-called
supervised learning mode, the actual output of
a neural network is compared to the desired
output. Weights, which are usually randomly set
to begin with, are then adjusted so that the next
iteration will produce a closer match between the
desired and the actual output. Various learning
methods for weight adjustments try to minimize
the differences or errors between observed and
computed output data. Training consists of pre-
senting input and output data to the network.
These data are often referred to as training data.
For each input provided to the network, the
corresponding desired output set is provided as
well.

The training phase can consume a lot of time.
It is considered complete when the artificial
neural network reaches a user-defined perfor-
mance level. At this level the network has
achieved the desired statistical accuracy as it
produces the required outputs for a given
sequence of inputs. When no further learning is
judged necessary, the resulting weights are typ-
ically fixed for the application.

Once a supervised network performs well on
the training data, it is important to see what it
can do with data it has not seen before. If a
system does not give a reasonable output for
this test set, this means that the training period
should continue. Indeed, this testing is critical
to ensure that the network has learned the
general patterns involved within an application
and has not simply memorized a given set of
data.

Smith (1993) suggests the following proce-
dure for preparing and training an ANN:
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1. Design a network.

2. Divide the data set into training, validation,
and testing subsets.

3. Train the network on the training data set.

4. Periodically stop the training and measure the
error on the validation data set.

5. Save the weights of the network.

6. Repeat Steps 2, 3, and 4 until the error on the
validation data set starts increasing. This is
the moment where the overfitting has started.

7. Go back to the weights that produced the
lowest error on the validation data set, and
use these weights for the trained ANN.

8. Test the trained ANN using the testing data
set. If it shows good performance, use it. If
not, redesign the network and repeat entire
procedure from Step 3.

There is a wide selection of available neural
network models. The most popular is probably
the multilayer feedforward network, which is
typically trained with static back propagation.
They are easy to use, but they train slowly, and
require considerable training data. In fact, the
best generalization performance is produced if
there are at least 30 times more training samples
than network weights (Haykin 1999). Adding
local recurrent connections can reduce the
required network size, making it less sensitive to
noise, but it may get stuck on a solution that is
inferior to what can be achieved.

5.2.2 An Example

To illustrate how an ANN might be developed,
consider the simple problem of predicting a
downstream pollutant concentration based on an
upstream concentration and the streamflow.
Twelve measurements of the streamflow quan-
tity, velocity, and pollutant concentrations at two
sites (an upstream and a downstream site) are
available. The travel times between the two
measurement sites have been computed and
these, plus the pollutant concentrations, are
shown in Table 5.1.
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Table 5.1 Streamflow travel times and pollutant concentrations

travel

time

(days)
2.0 20.0
2.0 15.0
1.5 30.0
1.0 20.0
0.5 20.0
1.0 15.0
0.5 30.0
1.5 25.0
1.5 15.0
2.0 30.0
1.0 30.0
0.5 25.0

Assume at first that the ANN structure con-
sists of two input nodes, a hidden node, and a
single output node. One of the input nodes is for
the upstream concentration and the other input
node is for the travel time. The single output
node represents the downstream concentration
expressed as a fraction of the upstream concen-
tration. This is shown in Fig. 5.5.

The model output is the fraction of the
upstream concentration that reaches the down-
stream site. That fraction can be any value from 0
to 1. Hence the sigmoid function (Eq. 5.5) is
applied at the middle node and at the output
node. Using two or more data sets to train or
calibrate this ANN (Fig. 5.5) results in a poor fit
as measured by the minimum sum of absolute
deviations between calculated and measured
concentration data. The more data samples used,

concentration
upstream downstream

6.0
4.5
12.2
11.0
14.8
82
222
10.2
6.1
9.0
16.5
18.5

the worse the fit. This structure is simply too
simple. Hence, another node was added to the
middle layer. This ANN is shown in Fig. 5.6.

Using only half the data (six data sets) for
training or calibration, the weights obtained
provided a near perfect fit. The weights obtained
are shown in Table 5.2.

Next the remaining six data sets were applied
to the network with weights set to those values
shown in Table 5.2. Again the sum of absolute
deviations was essentially 0. Similar results were
obtained with increasing numbers of data sets.

The values of the weights in Table 5.2 indi-
cate something water quality modelers typically
assume, and that is that the fraction of the
upstream pollutant concentration that reaches a
downstream site is independent of the actual
upstream concentration (see Chap. 4). This ANN
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Fig. 5.5 Initial ANN for
example problem

. weights:
upstream concentration |
w
travel time O/

input nodes

weights:
=O—n—0
w2

middle layer node output node

Fig. 5.6 Modified ANN
for example problem

upstream concentration Q wl

travel time

input nodes

weights: weights:

e

middle layer nodes

output node

Table 5.2 Weights for each link of the ANN shown in Fig. 5.6 based on six data sets from Table 5.1. All bias

variables (6 in Eq. 5.5) were 0

weights ‘ value ‘ weights value \
W) 0.0 wg 8.1
Wy 0.0 We -2.8
W3 -0.6
Wy 3.9

could have had only one input node, namely that
for travel time. This conforms to the typical
first-order decay function:

Fraction of pollutant concentration downstream
per unitconcentration upstream
= exp{—k(travel time)},
(5.6)

where the parameter k is the decay rate constant
having units of 1/travel time (travel time units_l).

5.3 Evolutionary Algorithms
Evolutionary algorithms (EA) represent a broad

spectrum of heuristic approaches for simulating
biological evolution in the search for improved
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“fitness,” i.e., the best values of decision vari-
ables and parameters based on an objective or
fitness function. Evolutionary algorithms are
broadly based on the repeated mutation and
recombination and selection: in each generation
(iteration) to define new individuals (candidate
solutions). These are generated by variation,
usually in a stochastic way, and then some
individuals are selected for the next generation
based on their relative fitness or objection func-
tion value. Over the generation sequence, indi-
viduals with increasingly better fitness values are
generated (Simon 2013).

Primary examples include genetic algorithms
(Holland  1975), evolutionary  strategies
(Rechenberg 1973; Schwefel 1981), evolutionary
programming (Fogel et al. 1966), and genetic
programming (Koza 1992). These methods are
comprised of algorithms that operate using a
population of alternative solutions or designs,
each represented by a potential decision vector.
They rely on randomized operators that simulate
mutation and recombination to create new indi-
viduals, i.e., solutions, who then compete to
survive via the selection process, which operates
according to a problem-specific fitness or objec-
tive function. In some cases this function can be
a complex simulation model dependent on the
values of its parameters and decision variables
derived from the EA. EA popularity is, at least in
part, due to their potential to solve nonlinear,
nonconvex, multimodal, and discrete problems
for which deterministic gradient-based search
techniques incur difficulty or fail completely. The
growing complexity and scope of environmental
and water resources applications has served to
expand EAs’ capabilities.

Currently, the field of biologically inspired
search algorithms mostly include variations of
evolutionary algorithms and swarm intelligence
algorithms, e.g., ant colony optimization (ACO),
particle swarm optimization (PSO), bees algo-
rithm, bacterial foraging optimization (BFO), and
so on, many of which have been used to analyze
water resources planning and management
problems. This is especially true for application
of genetic algorithms, arguably among the most
popular of the several types of EAs. EAs are
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flexible tools that can be applied to the solution
of a wide variety of complex water resources
problems. Nicklow et al. (2010) provides a
comprehensive review of state-of-the-art meth-
ods and their applications in the field of water
resources planning and management. EAs have
been successfully applied to the study of water
distribution systems, urban drainage and sewer
systems, water supply and wastewater treatment,
hydrologic and fluvial modeling, groundwater
systems, and parameter identification, to name a
few. Nicklow et al. also identify major challenges
and opportunities for the future, including a call
to address larger scale problems that involve
uncertainty and an expanded need for collabo-
ration among multiple stakeholders and disci-
plines. Evolutionary computation methods will
surely continue to evolve in the future as analysts
encounter increased problem complexities and
uncertainty and as the societal pressure for more
innovative and efficient solutions rises.

5.3.1 Genetic Algorithms

Genetic algorithms are randomized general-
purpose search techniques used for finding the
best values of the parameters or decision vari-
ables of existing models. It is not a model-
building tool like genetic programming. Genetic
algorithms and their variations are based on the
mechanisms of natural selection (Goldberg
1989). Unlike conventional optimization search
approaches based on gradients, genetic algo-
rithms work on populations of possible solutions,
attempting to find a solution set that either
maximizes or minimizes the value of a function
of those parameters and decision variables. This
function is called an objective function. Some
populations of solutions may improve the value
of the objective function, others may not. The
ones that improve its value play a greater role in
the generation of new populations of solutions
than those that do not. This process continues
until no significant improvement in model output
is apparent. Just how good or “fit” a particular
population of parameter and decision variable
values is must be evaluated using a model of the
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firm 1
B{=6x1 -x12

By=7x7-1.5x72 |

firm 3
B3 = 8x3-0.5x32

o

4

Fig. 5.7 Water allocation to three users from a stream having a flow of Q

system that contains these parameters and deci-
sion variables. This system model is separated
from the GA model. This model separation
makes GA applicable for estimating the best
parameter and decision variable values of a wide
variety of simulation models used for planning,
design, operation, and management.

Each individual solution set of a GA model
contains the values of all the parameters or
variables whose best values are being sought.
These solutions are expressed as strings of val-
ues. For example, if the values of three variables
x, ¥, and z are to be obtained, these variables are
arranged into a string, xyz. Assuming each vari-
able is expressed using three digits, then the
string 056004876 would represent x = 56, y = 4,
and z = 876. These strings are called chromo-
somes. A chromosome is an array of numbers.
The numbers of the chromosome are called
genes. Pairs of chromosomes from two parents
join together and produce offspring, who in turn
inherit some of the genes of the parents. Altered
genes may result in improved values of the
objective function. These genes will tend to
survive from generation to generation, while
those that are inferior will tend to die and not
reappear in future population sets.

Chromosomes are usually represented by strings
of binary numbers. While much of the literature on

genetic algorithms focuses on the use of binary
numbers, numbers of any base may be used.

To illustrate the main features of genetic
algorithms, consider the problem of finding the
best allocations of water to the three water-
consuming firms shown in Fig. 5.7. Assume only
integer solutions are to be considered. The
maximum allocation, x;, to any single user i can-
not exceed 5, and the sum of all allocations
cannot exceed the value of Q, say 6.

0<x;<5 for i=1,2, and 3. (5.7)

XI+X2+)C3 §6 (58)

The objective is to find the values of each
allocation that maximizes the total benefits, B(X),
while satisfying (5.7) and (5.8).

Maximize B(X) = (6x; — x}) + (7xa — 1.5x3)
+ (8x3 — 0.5x3)
(5.9)

A population of possible feasible solutions is gen-
erated randomly. The best size of the sample solu-
tion population—the number of solutions being
considered—is usually determined by trial and
error.
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Using numbers to the base 10, a sample
individual solution (chromosome) could be 312,
representing the allocations x; = 3, x, = 1, and
x3 = 2. Another individual solution, picked at
random, might be 101. These two individuals or
chromosomes, each containing three genes, can
pair up and have two children.

The genes of the children are determined by
crossover and mutation operations. These pair-
ing, crossover and mutation operations are ran-
dom. Suppose a crossover is to be performed on
the pair of strings, 312 and 101. Crossover
involves splitting the two solution strings into
two parts, each string at the same place. Assume
the location of the split was randomly determined
to be after the first digit,

3|12
101

Crossover usually involves switching one part
of one string with the corresponding part of the
other string. After a crossover, the two new
individuals are 301 and 112.

Another crossover approach is to determine
for each corresponding pair of genes whether or
not they will be exchanged. This would be based
on some preset probability. For example, sup-
pose the probability of a crossover was set at
0.30. Thus, an exchange of each corresponding
pair of genes in a string or chromosome has a
30% chance of being exchanged. Assume as the
result of this “uniform” crossover procedure,
only the middle gene in the pair of strings 312
and 101 is exchanged. This would result in 302
and 111. The literature on genetic algorithms
describes many crossover methods for both bin-
ary as well as base 10 numbers. The interesting
aspect of GA approaches is that they can be, and
are, modified in many ways to suit the analyst in
the search for the best solution set.

Next consider mutation. Random mutation
operations can apply to each gene in each string.
Mutation involves changing the value of the gene
being mutated. If these strings contain binary
numbers, a 1 would be changed to 0, and a 0
would be changed to 1. If numbers to the base 10
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are used as they are here, mutation processes
have to be defined. Any reasonable mutation
scheme can be defined. For example, suppose the
mutation of a base 10 number reduces it by 1,
unless the resulting number is infeasible. Hence
in this example, a mutation could be defined such
that if the current value of the gene being
mutated (reduced) is 0, then the new number is 5.
Suppose the middle digit 1 of the second new
individual, 112, is randomly selected for muta-
tion. Thus, its value changes from 1 to 0. The
new string is 102. Mutation could just as well
increase any number by 1 or by any other integer
value. The probability of a mutation is usually
much smaller than that of a crossover.

Suppose these paring, crossover, and mutation
operations have been carried out on numerous
parent strings representing possible feasible
solutions. The result is a new population of
individuals (children). Each child’s fitness, or
objective value, can be determined. Assuming
the objective function (or fitness function) is to
be maximized, the higher the value the better.
Adding up all the objective values associated
with each child in the population, and then
dividing each child’s objective value by this total
sum yields a fraction for each child. That fraction
is the probability of that child being selected for
the new population of possible solutions. The
higher the objective value of a child, the higher
the probability of its being selected to be a parent
in a new population.

In this example, the objective is to maximize
the total benefit derived from the allocation of
water, Eq. 5.9. Referring to Eq. 5.9, the string
301 has a total benefit of 16.5. The string 102 has
a total benefit of 19.0. Considering just these two
children, the sum of these two individual benefits
is 35.5. Thus the child (string) 301 has a proba-
bility of 16.5/35.5 = 0.47 of being selected for
the new population, and the other child (string
102) has a probability of 19/35.5 = 0.53 of being
selected. Drawing from a uniform distribution of
numbers ranging from O to 1, if a random number
is in the range 0-0.47, then the string 301 would
be selected. If the random number exceeds 0.47,
then the string 102 would be selected. Clearly in
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a more realistic example the new population size
should be much greater than two, and indeed it
typically involves hundreds of strings.

This selection or reproduction mechanism
tends to transfer to the next generation the better
(more fit) individuals of the current generation.
The higher the “fitness” (i.e., the objective value)
of an individual—in other words, the larger the
relative contribution to the sum of objective
function values of the entire population of indi-
vidual solutions—the greater will be the chances
of that individual string of solution values being
selected for the next generation.

Genetic algorithms involve numerous itera-
tions of the operations just described. Each iter-
ation (or generation) produces populations that
tend to contain better solutions. The best solution
of all populations of solutions should be saved.
The genetic algorithm process can end when
there is no significant change in the values of the
best solution that has been found. In this search
process, there is no guarantee this best solution
will be the best that could be found, that is, a
global optimum.

This general genetic algorithm process just
described is illustrated in the flow chart in
Fig. 5.8.

5.3.2 Example Iterations

A few iterations with a small population of ten
individual solutions for this example water allo-
cation problem can illustrate the basic processes
of genetic algorithms. In practice, the population
typically includes hundreds of individuals and
the process involves hundreds of iterations. It
would also likely include some procedures the
modeler/programmer may think would help
identify the best solution. Here we will keep the
process relatively simple.

The genetic algorithm process begins with the
random generation of an initial population of
feasible solutions, proceeds with the paring of
these solution strings, performs random cross-
over and mutation operations, computes the
probability that each resulting child will be
selected for the next population, and then
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randomly generates the new population. This
process repeats itself with the new population
and continues until there is no significant
improvement in the best solution found from all
past iterations.

For this example, we will

1. Randomly generate an initial population of
strings of allocation variable values, ensuring
that each allocation value (gene) is no less
than 0 and no greater than 5. In addition, any
set of allocations A;, A,, and A5 that sum to
more than 6 will be considered infeasible and
discarded.

2. Pair individuals and determine if a crossover
is to be performed on each pair, assuming the
probability of a crossover is 50%. If a cross-
over is to occur, we will determine where in
the string of numbers it will take place,
assuming an equal probability of a crossover
between any two numbers.

3. Determine if any number in the resulting
individual strings is to be mutated, assuming
the probability of mutation of any particular
number (gene) in any string (chromosome) of
numbers as 0.10. For this example, a mutation
reduces the value of the number by 1, or if the
original number is 0, mutation changes it to 5.
After mutation, all strings of allocation values
(the genes in the chromosome) that sum to
more than 6 are discarded.

4. Using Eq. 5.9, evaluate the “fitness” (total
benefits) associated with the allocations rep-
resented by each individual string in the
population. Record the best individual string
of allocation values from this and previous
populations.

5. Return to Step 1 above if the change in the
best solution and its objective function value
is significant; Otherwise terminate the
process.

These steps are performed in Table 5.3 for
three iterations using a population of 10.

The best solution found so far is 222: that is,
X1 =2, xp =2, x3=2. This process can and
should continue. Once the process has converged
on the best solution it can find, it may be prudent
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and mutation
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Fig. 5.8 Flow chart of genetic algorithm procedure

to repeat the process, but this time, change the
probabilities of crossover or mutation or let
mutation be an increase in the value of a number
rather than a decrease. It is easy to modify the
procedures used by genetic algorithms in an
attempt to derive the best solution in an efficient
manner.

Note that the above description of how ge-
netic algorithms work permits the use of any
“fitness function” for comparing alternative

solutions, and for selecting preferred ones. The
search procedure is independent of the particular
characteristics of the water resource system being
analyzed. This fitness “function” can be a com-
plex groundwater quality model, for example, the
parameter values of which are being suggested
by the outcome of the GA procedure. Thus in
such an application, both simulation and opti-
mization procedures are combined and there are
no restrictions on the features of either. As might
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Table 5.3 Several iterations for solving the allocation problem using genetic algorithms
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be expected, this has opened up a wide variety of
planning and management problems that now
can be analyzed in the search for effective
solutions.

5.3.3 Differential Evolution

Differential evolution (DE) operates through
similar computational steps as employed by a
standard evolutionary algorithm (EA) such as
genetic algorithms. DE is an optimization tech-
nique that iteratively modifies a population of
candidate solutions to make it converge to an
optimum value. However, unlike traditional EAs,
DE programs create new-generation population
members by adding a weighted difference
between two population vectors to a third vector.
To illustrate, after initializing multiple candidate
solutions with random values, begin an iterative
process where for each candidate solution x you
produce a trial vector v = a + (b — ¢)/2, where aq,
b, c are three distinct candidate solutions picked
randomly among the population of possible
solutions. Next, you randomly swap vector
components between x and v to produce v'. At
least one component from v must be swapped.
Finally, you replace x in your population with v’
only if V' is a better candidate (i.e., it improves
the value your objective or fitness function). This
process is repeated until no better solution can be
found. No separate probability distribution need
be used for generating the offspring.

Since its inception in 1995, many variants of
the basic algorithm have been developed with
improved performance. Books and web pages are
available that present detailed reviews of the
basic concepts of DE and of its major variants, as
well as its application to multiobjective, con-
strained, large-scale, and uncertain optimization
problems. Numerous computer software pack-
ages are also available for solving problems
using DE. For example, see Das and Suganthan
(2011), Storn and Price (1997), Price et al.
(2006), and Schwefel (1995) to mention a few.
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5.3.4 Covariance Matrix Adaptation
Evolution Strategy

Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) is another stochastic,
derivative-free method for numerical solution of
nonlinear or nonconvex continuous optimization
problems. They belong to the class of evolu-
tionary algorithms. Pairwise dependencies
between the variables are represented by a
covariance matrix. The covariance matrix adap-
tation (CMA) method updates the covariance
matrix in a way that improves the value of the
fitness function. Adaptation of the covariance
matrix is similar to the approximation of the
inverse Hessian matrix in calculus-based opti-
mization. In contrast to most classical methods,
fewer assumptions on the nature of the underly-
ing objective function are made. Only the rank-
ing between candidate solutions is exploited for
learning the sample distribution and neither
derivatives nor even the function values them-
selves are required by the method (Hansen 2006;
Igel et al. 2007).

Some software programs for DE are at (http://
www l.icsi.berkeley.edu/ ~ storn/code.html), for
CMA-ES at (https://www.Iri.fr/ ~ hansen/
cmaesintro.html) and for multiobjective EAs at
(http://moeaframework.org/).

5.4 Genetic Programming

One of the challenges in computer science is to
program computers to perform tasks without
telling them how. In other words, how to enable
computers to learn to program themselves for
solving particular problems? Since the 1950s,
computer scientists have tried, with varying
degrees of success, to give computers the ability
to learn. The name for this field of study is
“machine learning” (ML), a phrase used in 1959
by the first person to make a computer perform a
serious learning task, Arthur Samuel. Originally,
“machine learning” meant the ability of
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computers to program themselves. That goal has,
for many years, proven very difficult. As a con-
sequence, computer scientists have pursued more
modest goals. A good present-day definition of
machine learning is given by Mitchell (1997),
who identifies machine learning as the study of
computer algorithms that improve automatically
through experience.

Genetic programming (GP) aspires to do just
that: to induce a population of computer pro-
grams or models (objects that turn inputs to
outputs) that improve automatically as they
experience the data on which they are trained
(Banzhaf et al. 1998). Genetic programming is
one of the many machine-learning methods.
Within the machine-learning community, it is
common to use “genetic programming” as
shorthand for any machine-learning system that
evolves tree structures (Koza 1992).

While there is no GP today that will auto-
matically generate a model to solve any problem,
there are some examples where GP has evolved
programs that are better than the best programs
written by people to solve a number of difficult
engineering problems. Some examples of these
human-competitive GP achievements can be seen
in Koza et al. (1999), as well as in a longer list on
the Internet (www.genetic-programming.com/
humancompetitive.html). Since Babovic (1996)
introduced the GP paradigm in the field of water
engineering, a number of researchers have used
the technique to analyze a variety of water
management problems.

The main distinctive feature of GP is that it
conducts its search for a solution to a given
problem by changing model structure rather than
by finding better values of model parameters or
variables. There is no guarantee, however, that
the resulting structure (which could be as simple
as regression Eqgs. 5.1, 5.2, or 5.3) will give us
any insight into the actual workings of the
system.

The task of genetic programming is to find at
the same time both a suitable functional form of a
model and the numerical values of its parameters.
To implement GP, the user must define the basic
building blocks (mathematical operations and
variables) that may be used; the algorithm then
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tries to build the model using sequences of the
specified building blocks.

One of the successful applications of GP in
automatic model building is that of symbolic
regression. Here GP searches for a mathematical
regression expression in symbolic form that best
produces the observed output given the associ-
ated input. To perform this task GP uses a
physical symbol system divided into two sets.
The first set contains the symbols for indepen-
dent variables as well as parameter constants as
appropriate. The content of this set is based on
the nature of the problem to be solved. The
second set contains the basic operators used to
form a function. For example, the second set can
contain the arithmetic operators (+, —, *, /) and
perhaps others such as log, square root, sine, and
cosine as well, again based on the perceived
degree of complexity of the regression.

To produce new expressions (individuals)
GP requires that two “parent” expressions from
the previous generation be divided and recom-
bined into two offspring expressions. An exam-
ple of this is the parse tree for the expression
a + (blc) illustrated in Fig. 5.9. The crossover
operation simply exchanges a branch of one
parent with a branch of the other.

Software programs have been written to
implement GP. For example, GPKernel devel-
oped by Babovic and Keijzer (2000) at the
Danish Hydraulic Institute (DHI) has been used
in applications such as: rainfall-runoff modeling
(Babovic and Abbott 1997; Drecourt 1999;
Liong et al. 2000), sediment transport modeling,
salt intrusion in estuaries, and roughness esti-
mation for a flow over a vegetation bed (Babovic
and Abbott 1997). More details about GPKernel
can be seen in Aguilera (2000).

The challenge in applying genetic program-
ming for model development is not only getting
a close fit between observed and predicted
outputs, given a set of input data, but also of
interpreting the model that is generated to
obtain additional understanding of the actual
processes taking place. There are also potential
problems in creating a dimensionally correct
model if the input data are not dimensionless.
As a consequence, many applications using
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Fig. 5.9 An illustration of
a crossover operation and
mutation operation for
genetic programming
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GP seem to require some guidance based on a
mix of both physically based and data-driven
approaches.

5.5 Qualitative Functions
and Modeling

So far the discussion in this chapter has been
focused on quantitative data that have numerical
values. The precise quantification of many sys-
tem performance criteria and parameter and
decision variables is not always possible, nor is it
always necessary. When the values of variables
cannot be precisely specified, they are said to be
uncertain or fuzzy. If the values are uncertain,
probability distributions may be used to quantify
them. (The next chapter describes this approach
in some detail.) Alternatively, if they are best
described by qualitative adjectives, such as dry or
wet, hot or cold, expensive or cheap, clean or
dirty, and high or low, membership functions
indicating the fraction of stakeholders who
believe particular quantitative descriptions of

parameter or decision variable values are indeed
hot, or cold, or clean or dirty, etc., can be used to
quantify these qualitative descriptions. Both
probability distributions and membership func-
tions of these uncertain or qualitative variables
can be included in quantitative models. This
section introduces how qualitative variables can
be included within models used for the prelimi-
nary screening of alternative water resources
plans and management policies.

5.5.1 Linguistic Functions

Large, small, pure, polluted, satisfactory, unsat-
isfactory, sufficient, insufficient, excellent, good,
fair, poor, and so on are words often used to
describe various attributes or performance mea-
sures of water resources systems. These
descriptors do not have “crisp,” well-defined
boundaries that separate them from their oppo-
sites. A particular mix of economic and envi-
ronmental impacts may be more acceptable to
some and less acceptable to others. Plan A is
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better than Plan B. The quality and temperature
of water is good for swimming. These qualita-
tive, or so-called “fuzzy,” statements convey
information despite the imprecision of the itali-
cized adjectives. The next section illustrates how
these linguistic qualitative descriptors can be
incorporated into optimization models using
membership functions.

5.5.2 Membership Functions

Assume a set A of real or integer numbers
ranging from 18 to 25. Thus A = [18, 25]. Any
number x is either in or not in the set A. The
statement “x belongs to A” is either true or false
depending on the value of x. The set A is called a
crisp set. If one is not able to say for certain
whether or not any number x is in the set, then
the set A could be referred to as fuzzy. The degree
of truth attached to that statement is defined by a
membership function. Membership functions
range from O (completely false) to 1 (completely
true).

Consider the statement, “The water tempera-
ture should be suitable for swimming.” Just what
temperatures are suitable will depend on the
persons asked. It would be difficult for anyone to
define precisely those temperatures that are
suitable if it is understood that temperatures
outside that range are absolutely not suitable.

A function defining the interval or range of
water temperatures suitable for swimming is
shown in Fig. 5.10. Such functions may be
defined on the basis of the responses of many
potential swimmers. There is a zone of impreci-
sion or disagreement at both ends of the range.
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The form or shape of a function depends on the
individual subjective feelings of the “members”
or individuals who are asked their opinions. To
define this particular function, each individual
i could be asked to define his or her comfortable
water temperature interval (T';, Ty;). The value
associated with any temperature value 7T equals
the number of individuals who place that
T within their range (T;, T»;), divided by the total
number of individual opinions obtained. It is the
fraction of the total number of individuals that
consider the water temperature 7' suitable for
swimming. For this reason such functions are
often called membership functions (Figs. 5.10,
5.11 and 5.12).

The assignment of membership values is
based on subjective judgments, but such judg-
ments seem to be sufficient for much of human
communication.

Now suppose the water temperature applied to
a swimming pool where the temperature could be
regulated. The hotter the temperature the more it
will cost. If we could quantify the economic
benefits associated with various temperatures we
could perform a benefit—cost analysis by maxi-
mizing the net benefits. Alternatively, we could
maximize the fraction of people who consider the
temperature good for swimming subject to a cost
constraint using a membership function such as
in Fig. 5.10 in place of an economic benefit
function (Chap. 4 discusses ways of doing this.).

Continuing with this example, assume you are
asked to provide the desired temperature at a
reasonable cost. Just what is reasonable can also
be defined by another membership function, but
this time the function applies to cost, not tem-
perature. Both the objective and constraint of this

Fig. 5.10 A membership
function for suitability of
water temperature for 1
swimming
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Fig. 5.11 Two membership functions relating to swim-
ming water temperature. Set A is the set defining the
fraction of all individuals who think the water temperature

is too cold, and Set B defines the fraction of all individuals
who think the water temperature is too hot

Fig. 5.12 Membership
function for water
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problem are described qualitatively. In this case
one could consider there are in fact two objec-
tives, suitable temperature and acceptable cost.
A model that maximizes the minimum value of
both membership functions is one approach for
finding an acceptable policy for controlling the
water temperature at this swimming pool.

5.5.3 lllustrations of Qualitative
Modeling
5.5.3.1 Water Allocation

Consider the application of qualitative modeling
to the water allocation problem illustrated in
Fig. 5.7. Assume, as in the previous uses of this
example, the problem is to find the allocations of
water to each firm that maximize the total ben-
efits TB(X):

Maximize TB(X) = (6x;—x7) + (7x, — 1.5x3)
+ (8x3 — 0.5x3)
(5.10)

These allocations cannot exceed the amount
of water available, Q, less any that must remain
in the river, R. Assuming the available flow for
allocations, Q — R, as 6, the crisp optimization
problem is to maximize Eq. (5.10) subject to the
resource constraint:

X1 +x+x3<6 (5.11)

The optimal solution is x; = 1, x, = 1, and
x3 =4 as previously obtained in Chap. 4 using
any of several different optimization methods.
The maximum total benefit, TB(X), from
Eq. (5.10), equals 34.5.

To create a qualitative equivalent of this crisp
model, the objective can be expressed as a
membership function of the set of all possible
objective values. The higher the objective value
the greater the membership function value. Since
membership functions range from 0 to 1, the
objective needs to be scaled so that it also ranges
from O to 1.
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Fig. 5.13 Membership
function for “about 6 units
more or less”

The highest value of the objective occurs
when there is sufficient water to maximize each
firm’s benefits. This unconstrained solution
would result in a total benefit of 49.17 and this
happens when x; = 3, x, = 2.33, and x3 = 8.

Thus, the objective membership function can
be expressed by

m(X) = [(6x1—x7) + (7x2 — 1.5x3)

+ (8x3 — 0.5x3)] /49.17 512

It is obvious that the two functions (Egs. 5.10
and 5.12) are equivalent. However, the goal of
maximizing objective function 5.10 is changed to
that of maximizing the degree of reaching the
objective target. The optimization problem
becomes

maximize m(X) = [(6x;—x7) + (7x, — 1.5x3)
+ (8x3 — 0.5x3)] /49.17
(5.13)

subject to

X1 +x+x3<6 (514)

The optimal solution of (5.13) and (5.14)
results in the same values of each allocation as do
Egs. (5.10) and (5.11). The optimal degree of
satisfaction is m(X) = 0.70.

Next, assume the total amount of resources
available to be allocated is limited to “about 6
units more or less,” which is a qualitative

constraint. Assume the membership function
describing this constraint is defined by Eq. (5.14)
and is shown in Fig. 5.13.

me(X)=1 if xj+x+x<5
mC(X) = [7 — ()C] + X2 +X3)}/2 if
mC(X):O if xi+x+x3>7

S5<xi+x+x3<7

(5.15)

Let the membership function of (5.12) be
called mg(X). The qualitative optimization
problem becomes one of maximizing the mini-
mum value of the two membership functions
(mg(X), mc(X)) subject to their definitions in
Egs. (5.12) and (5.15).

This yields x; = 0.91, x, = 0.94, x3 = 3.81,
mg(X) = mc(X) = 0.67, and the total net benefit,
Eq. (5.10), is TB(X) = 33.1. Compare this with
the crisp solution of x; = 1, x, = 1, x3 = 4, and
the total net benefit of 34.5.

5.5.3.2 Qualitative Reservoir Storage
and Release Targets

Consider the problem of trying to identify a
reservoir storage volume target, TS, for recreation
facilities given a known minimum release target,
T%, and reservoir capacity K. Assume, in this
simple example, these known release and
unknown storage targets must apply in each of
the three seasons in a year. The objective will be
to find the highest value of the storage target, T°,
that minimizes the sum of squared deviations
from actual storage volumes and releases that are
less than the minimum release target.
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Table 5.4 The solution to the reservoir optimization problem

variable value remarks

e 15.6
Sq 19.4
S, 7.5
S3 20.0
R4 16.9
R, 375
R, 20.6

Given a sequence of inflows, Q, the opti-
mization model is

Minimize D = 3 [(TS —8,)? +DR2} —0.0017"
t

(5.16)

subject to
SRS T
S, <K t=1,2,3 (5.18)
R, >TR —DR, r=1,2,3 (5.19)

Assume K = 20, T® = 25 and the inflows Q, are
5, 50, and 20 for periods ¢ =1, 2, and 3. The
optimal solution, yielding an objective value of
184.4, is listed in Table 5.4.

Now consider changing the objective function
into maximizing the weighted degrees of

target storage for each period

reservoir storage volume at beginning of period |
reservoir storage volume at beginning of period 2
reservoir storage volume at beginning of period 3
reservoir release during period |

reservoir release during period 2

reservoir release during period 3

“satisfying” the reservoir storage volume and
release targets.

Maximize E (wsms; + wrnig;)
12

(5.20)

where wg and wr are weights indicating the rel-
ative importance of storage volume targets and
release targets, respectively. The variables mg;,
are the degrees of satisfying the storage volume
target in the three periods ¢, expressed by
Eq. (5.21). The variables mg, are the degrees of
satisfying the release target in periods ¢, expres-
sed by Eq. (5.22).

ms, = S;/TS for S§;<TS and

(K—$)/(K—TS) for Ts<s, O3V

mr, = R;/TR for R, <TR and
1 for R, > TR (522)
Equations (5.21) and (5.22) are shown in

Figs. 5.14 and 5.15, respectively.
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Fig. 5.14 Membership
function for storage
volumes w 1.0

0 TS K
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Fig. 5.15 Membership
function for releases
x 1.0
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Box 5.1. Reservoir model written for solution using LINGO.

SETS:

PERIODS /1..3/: I, R, m, ms, mr, sl, s2, ms|, ms2;

NUMBERS /I..4/: S;

ENDSETS

1¥%* OBJECTIVE ***; max = degree + 0.001*TS;

!Initial conditions; s(l) = s(TN + 1);

!Total degree of satisfaction; degree = @SUM(PERIODS(t): m(t));

'Weighted degree in period t; @FOR (PERIODS(t):

m(t) = ws*ms(t) + wr*mr(t);

S(t) = sl(t) + s2(t);

sl(t) <TS; s2(t) <K-TS ;

'ms(t) = (sl (t)/TS) - (s2(t)/(K-TS)) = rewritten in case dividing by 0;

ms | (t)*TS = sl(t); ms2(t)*(K-TS) = s2(t); ms(t) = msl(t) - ms2(t);
mr(t) < R(t)/TR; mr(t) < I; St+1) = S(t) + I(t) - R(t); );

DATA:

TN =3;K=20;ws=%wr=1? |=55020; TR = 25;

ENDDATA
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Table 5.5 Solution of qualitative model for reservoir storage volumes and releases based on objective (5.20)
variable value remarks &
'Th1s opt1m;§zz.1t10n model _ertten for solution Maximize
using LINGQ is as shown in Box 5.1. Mynin = maximize minimum (ms,, mg,)
Given weights wg = 0.4 and wg = 0.6, the (5.23)

optimal solution obtained from solving the model
shown in Box 5.1 using LINGO® is listed in
Table 5.5.

If the objective Eq. 5.20 is changed to one of
maximizing the minimum membership function
value, the objective becomes

To include the objective Eq. 5.23 in the opti-
mization model a common lower bound, m,,;,, is
set on each membership function, mg; and mg,, and
this variable is maximized. The optimal solution
changes somewhat and is as shown in Table 5.6.
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Table 5.6 Optimal solution of reservoir operation model based on objective (5.23)

remarks

variable value

E020827t

This solution differs from that shown in
Table 5.5 primarily in the values of the mem-
bership functions. The target storage volume
operating variable value, T°, stays the same value
in this example.

5.5.3.3 AQualitative Water Quality
Management Objectives
and Constraints
Consider the stream pollution problem illustrated
in Fig. 5.12. The stream receives waste, W; from
sources located at sites i =1 and 2. Without
some waste treatment at these sites, the pollutant
concentrations at sites 2 and 3 will exceed the
maximum desired concentration. The problem is
to find the fraction of wastewater removal, x;, at
sites i = 1 and 2 required to meet the quality

standards at sites 2 and 3 at a minimum total cost.
The data used for the problem shown in Fig. 5.16
are defined and listed in Table 5.7.

Using the notation defined in Table 5.7, the
crisp model for this problem, as discussed in the
previous chapter, is

Minimize C; (X]) + G (Xz) (5.24)

subject to
Water quality constraint at site 2:

P10+ Wi (1 —Xi)|an/Qr < PF™

((32)(10) 4 250,000(1 — X;)/86.4] 0.25/12
<20 which, when simplified, is : X; >0.78
(5.25)
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Table 5.7 Parameter values selected for the water quality management problem illustrated in Fig. 5.12

parameter unit value

Water quality constraint at site 3:

{[P1Q1 + Wi (1 — X1)]ass
+ [Wa(1 — X5)]ar)/ 03 < P

{[(32)(10) +250,000(1 — X;)/86.4] 0.15
+[80,000(1 — X,)/86.4]0.60} /13 < 20
(5.26)

which, when simplified, is: X; + 1.28X, = 1.79
Restrictions on fractions of waste removal:

0<X;<1.0 forsitesi=1and2 (5.27)

For a wide range of reasonable costs, the
optimal solution found using linear programming
was 0.78 and 0.79, or essentially 80% removal
efficiencies at sites 1 and 2. Compare this
solution with that of the following qualitative
model.

remark

E020827u

To consider a more qualitative version of this
problem, suppose the maximum allowable pol-
lutant concentrations in the stream at sites 2 and
3 were expressed as “about 20 mg/l more or
less.” Obtaining opinions of individuals of what
they consider to be “20 mg/l more or less,” a
membership function can be defined. Assume it
is as shown in Fig. 5.17.

Next, assume that the government environ-
mental agency expects each polluter to install
best available technology (BAT) or to carry out
best management practices (BMP) regardless of
whether or not this is required to meet stream
quality standards. Asking experts just what BAT
or BMP means with respect to treatment effi-
ciencies could result in a variety of answers.
These responses can be used to define member-
ship functions for each of the two firms in this
example. Assume these membership functions
for both firms are as shown in Fig. 5.18.
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firm 1
producing W

firm 2

producing Wo

recreation
park

e

Fig. 5.16 A stream pollution problem of finding the waste removal efficiencies (x1, x,) that meet the stream quality

standards at least cost

Fig. 5.17 Membership
function for “about 20 mg/1

more or less” a |0
&
/r 05
0.0 :
10 12

14 16 18 20 22 24
—)> concentration

Finally, assume there is a third concern that
has to do with equity. It is expected that no
polluter should be required to treat at a much
higher efficiency than any other polluter.
A membership function defining just what dif-
ferences are acceptable or equitable could quan-
tify this concern. Assume such a membership
function is as shown in Fig. 5.19.

Considering each of these membership func-
tions as objectives, a number of fuzzy

optimization models can be defined. One is to find
the treatment efficiencies that maximize the
minimum value of each of these membership
functions.

Maximize m = max min{mp, mr, mg}
(5.28)

If we assume that the pollutant concentrations
at sites j = 2 and 3 will not exceed 23 mg/l, the
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Fig. 5.18 Membership
function for best available

treatment technology EP 1.0
? 0.5

0.0 ;

60 65

70 75 80 85 90 95
—> % treatment efficiency x;

Fig. 5.19 Equity
membership function in
terms of the absolute
difference between the two
treatment efficiencies
expressed as a percent

pollutant concentration membership functions
mp; are

mp; = 1-— sz/S (529)

The pollutant concentration at each site j is the
sum of two components:

Pj=P1j+P2j (530)

where
P; <18 (5.31)
Py <(23 —18) (5.32)

If we assume the treatment plant efficiencies
will be between 70 and 90% at both sites i = 1

and 2, the treatment technology membership

functions mr; are
mr; = (XZI/OOS) - (x41/010) (533)

and the treatment efficiencies, expressed as
fractions, are

X; = 0.70 4 xp; + x3; + x4 (5.34)
where
X2 <0.05 (5.35)
x3: <0.05 (5.36)
x4; <0.10 (5.37)
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Finally, assuming the difference between
treatment efficiencies will be no greater than 14,
the equity membership function, mg, is

mg = Z — (0.5/0.05)D; +0.5(1 — Z)

—(0.5/(0.14 — 0.05))D> (5.38)

where
D, <0.05Z (5.39)
D, < (0.14 — 0.05)(1 — Z) (5.40)
X, — X, =DP - DM (5.41)
DP+DM = D; +0.05(1 — Z)+ D, (5.42)
Z is a binary 0, 1 variable. (5.43)

The remainder of the water quality model
remains the same: Water quality constraint at site 2:

PO +Wi(1 —X))]a2/Qr = P,
[(32)(10) +250,000(1 — X,)/86.4]0.25/12 = P,

(5.44)
Water quality constraint at site 3:

{P1Q1 + Wi (1 = X1)]ai3 + [Wa(l — X2)] a3} /03 = P3
{1(32)(10) +250,000(1 — X,)/86.4] 0.15
+[80,000(1 — X»)/86.4]0.60} /13 = P

(5.45)
Restrictions on fractions of waste removal:

0<X;,<1.0 forsites i=1 and 2. (5.46)

Solving this model using LINGO® yields the
results shown in Table 5.8.

This solution confirms the assumptions made
when constructing the representations of the
membership functions in the model. It is also
very similar to the least-cost solution found
from solving the crisp linear programming (LP)
model containing no membership functions.

Table 5.8 Solution to water quality management model Egs. 5.28 to 5.46

remarks

variable value

E020827v




5.6 Conclusions
5.6 Conclusions

Most computer-based models used for water
resources planning and management are physi-
cal, mechanistic, or process-based quantitative
models. Builders of such models attempt to
incorporate the important physical, biological,
chemical, geomorphological, hydrological, and
other types of interactions among all system
components, as appropriate for the problem
being addressed and the system being modeled.
This is done in order to be able to predict pos-
sible economic, ecologic, environmental, or
social impacts that might result from the imple-
mentation of some plan or policy. These types of
models almost always contain parameters. These
need values, and the values of the parameters
affect the accuracy of the impact predictions.

This chapter has outlined some data-fitting
methods of modeling that do not attempt to
model natural, economic, or social processes.
These have included ANN and two evolutionary
search approaches: genetic algorithms (GA) for
estimating the parameter and decision variable
values, and genetic programming for finding
models that replicate the real system. In some
situations, these biologically motivated search
methods, which are independent of the particular
system model, provide the most practical way to
calibrate model parameters.

Fortunately for potential users of GA, GP, and
ANN methods, software programs implementing
many of these methods are available on the
Internet. Applications of such methods to
groundwater modeling, sedimentation processes
along coasts and in harbors, rainfall runoff pre-
diction, reservoir operation, data classification,
and predicting surge water levels for navigation
represent only a small sample of what can be
found in the current literature.

Not all data are quantitative. In many cases
objectives and constraints are expressed as quali-
tative expressions. Optimization models incorpo-
rating such expressions or functions are
sometimes appropriate when only qualitative
statements apply to a particular water management
problem or issue. This chapter concludes by
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showing how this can be done using some simple
example problems associated with water alloca-
tions, reservoir operation, and pollution control.

The information presented in this chapter
serves only as an introduction. Those interested
in more detailed and complete explanations and
applications may refer to any of the additional
references listed in the next section.
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Exercises

5.1 An upstream reservoir serves as a recreation
site for swimmers, wind surfers, and boaters.
Italso serves as aflood storage reservoirin the
second of four seasons or time periods in a
year. The reservoir’s releases can be diverted
to an irrigation area. A wetland area further
downstream receives the unallocated portion
of the reservoir release plus the return flow
from the irrigation area. The irrigation return
flow contains a salinity concentration that can
damage the ecosystem.

(a) Assume there exist recreation lake level
targets, irrigation allocation targets, and
wetland flow and salinity targets. The
challenge is to determine the reservoir
releases and irrigation allocations so as
to “best” meet these targets. This is the
crisp’ problem.


http://dx.doi.org/10.1016/j.advwatres.2012.01.005

Data:

Reservoir storage capacity: 30 mcm;
During period 2 the flood storage ca-
pacity is 5 mcm;

Irrigation return flow fraction: 0.3 (i.e.,
30% of that diverted for irrigation);

Salinity concentration of reservoir
water: 1 ppt;
Salinity concentration of irrigation

return flow: 20 ppt;
Reservoir average inflows for four sea-
sons, respectively: 5, 50, 20, 10 mcm;

Targets for part (a):

Target maximum salinity concentration
in wetland: 3 ppt;

Target storage target for all four sea-
sons: 20 mcm;

Minimum flow target in wetland in each
season, respectively: 10, 20, 15,
15 mcm;

Maximum flow target in wetland in
each season, respectively: 20, 30, 25,
25 mcm;

Target irrigation allocations: 0, 20, 15,
5 mcm;

Next create fuzzy membership functions
to replace the targets and solve the prob-
lem. Assume that the targets used in
(a) above are expressed in qualitative
terms as membership functions. The
membership functions indicate the degree
of satisfaction for these targets. Solve for
the “best” reservoir release and allocation
policy that maximizes the minimum
membership function value. Each mem-
bership function defines the relative level
of satisfaction, where a value of 1 indi-
cates complete stakeholder satisfaction.
This is the qualitative problem.

(b)

5.2 Develop a flow chart showing how you

would apply genetic algorithms to finding the
parameters, a;;, of a water quality prediction
model, such as the one we have used to find
the concentration downstream of an upstream
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discharge site i. This will be based on
observed values of mass inputs, W;, and
concentrations, Cj;, and flows, Q; at a
downstream site j.

G= Z Wia;/Q;

The objective to be used for fitness is to
minimize the sum of the differences
between the observed C; and the computed
C;. To convert this to a maximization
objective you could use something like the
following:

Max1/(1+ D)
where

D> (Cjobs—Cjcalculated)
D > (Cjcalculated—Cjobs. )

Use a genetic algorithm program to predict
the parameter values asked for in problem
5.2, and then an artificial neural network
ANN to obtain a predictor of downstream
water quality based on the values of these
parameters. You may use the model and
data presented in Sect. 5.2 of Chap. 4 if you
wish.

Using a genetic algorithm program to
findthe allocations X; that maximize the
total benefits to the three water users i along
a stream, whose individual benefits are

Use I: 6X; — X}
Use2: 7X, — X3
Use 3: 8X; — X3

Assume the available stream flow is some
known value (ranging from O to 20).
Determine the effect of different genetic
algorithm parameter values on the ability to
find the best solution.

Consider the wastewater treatment problem
illustrated in the drawing below.
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200 kg/day
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W

100 kg/day

The initial stream concentration just
upstream of site 1 is 32. The maximum
concentration of the pollutant just upstream
of site 2 is 20 mg/l (g/m?), and at site 3 it is
25 mg/l. Assume the marginal cost per
fraction (or percentage) of the waste load
removed at site 1 is no less than that cost at
site 2, regardless of the amount removed.
Using a suitable genetic algorithm program,
solve for the least-cost wastewater treatment
at sites 1 and 2 that will satisfy the quality
constraints at sites 2 and 3, respectively.
Discuss the sensitivity of the GA parameter
values in finding the best solution. You can
get the exact solution using LINGO as
discussed in Sect. 4.5.3.

Develop an artificial neural network for flow
routing given the following two sets of
upstream and downstream flows. Use one set
of 5-periods for training (finding the unknown
weights and other variables) and the other set
for validation of the calculated parameter
values (weights and bias constants).
Develop the simplest artificial neural net-
work you can that does an adequate job of
prediction.

5.6

Open Access This chapter is distributed under the terms
of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if
changes were made.

Vst

Flow = 0.01157 m’/s
=1000 m*/d

Time period Upstream flow Downstream flow
1 450 366
2 685 593
3 830 755
4 580 636
5 200 325
1 550 439
2 255 304
3 830 678
4 680 679
5 470 534

[These outflows come from the following
model, assuming an initial storage in period
1 of 50, the detention storage that will
remain in the reach even if the inflows go to
0. For each period #:

Outflow(r) = 1.5(—50 + initial storage(t) + inflow(z))"?,

where the outflow is the downstream flow
and inflow is the upstream flow.]

The images or other third party material in this
chapter are included in the work's Creative Commons
license, unless indicated otherwise in the credit line; if
such material is not included in the work’s Creative
Commons license and the respective action is not per-
mitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt or
reproduce the material.
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Processes that are not fully understood, and
whose outcomes cannot be precisely predicted,
are often called uncertain. Most of the inputs to,
and processes that occur in, and outputs resulting
from water resource systems are not known with
certainty. Hence so too are the future impacts of
such systems, and even people’s reactions and
responses to these impacts. Ignoring this uncer-
tainty when performing analyses in support of
decisions involving the development and man-
agement of water resource systems could lead to
incorrect conclusions, or at least more surprises,
than will a more thorough analysis taking into
account these uncertainties. This chapter intro-
duces some commonly used approaches for
dealing with model input and output uncertainty.
Further chapters incorporate these tools in more
detailed optimization, simulation, and statistical
models designed to identify and evaluate alter-
native plans and policies for water resource
system development and operation.

6.1 Introduction

Uncertainty is always present when planning and
operating water resource systems. It arises
because many factors that affect the performance
of water resource systems are not and cannot be
known with certainty when a system is planned,
designed, built, and operated. The success and
performance of each component of a system often
depends on future meteorological, demographic,

© The Author(s) 2017

social, technical, and political conditions, all of
which may influence future benefits, costs, envi-
ronmental impacts, and social acceptability.
Uncertainty also arises due to the stochastic
(random over time) nature of meteorological and
hydrological processes such as rainfall and
evaporation. Similarly, future populations of
towns and cities, per capita water usage rates,
irrigation patterns, and priorities for water uses,
all of which impact water demand, are not known
with certainty. This chapter introduces methods
for describing and dealing with uncertainty, and
provides some simple examples of their use in
water resources planning. These methods are
extended in the following two chapters.

There are many ways to deal with uncertainty.
The simplest approach is to replace each uncer-
tain quantity either by its expected or average
value or by some critical (e.g., “worst-case”)
value and then proceed with a deterministic
approach. Use of expected values or alternatively
median values of uncertain quantities can be
adequate if the uncertainty or variation in a
quantity is reasonably small and does not criti-
cally affect the performance of the system. If
expected values of uncertain parameters or vari-
ables are used in a deterministic model, the
planner can then assess the importance of uncer-
tainty with sensitivity and uncertainty analyses,
discussed later in this and subsequent chapters.

Replacement of uncertain quantities by either
expected or worst-case values can adversely
affect the evaluation of project performance
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Table 6.1 Data for determining reservoir recreation potential

10 0.10
20 0.25
30 0.30
40 0.25
50 0.10

E02110la

when important parameters are highly variable.
To illustrate these issues, consider the evaluation
of the recreation potential of a reservoir.
Table 6.1 shows that the elevation of the water
surface varies from year to year depending on the
inflow and demand for water. The table indicates
the pool levels and their associated probabilities
as well as the expected use of the recreation
facility with different pool levels.

The average pool level L is simply the sum of
each possible pool level times its probability, or

L = 10(0.10) +20(0.25) + 30(0.30)

+40(0.25) +50(0.10) = 30 (6.)

This pool level corresponds to 100
visitor-days per day
VD(L) = 100 visitor-days per day (6.2)

A worst-case analysis might select a pool
level of 10 as a critical value, yielding an esti-
mate of system performance equal to 25 visitor-
days per day

VD(Liow) = VD(10) = 25 visitor-days perday (6.3)

Neither of these values is a good approxima-
tion of the average visitation rate, which is

25
75
100
80
70

VD = 0.10VD(10) + 0.25VD(20) + 0.30VD(30)
+0.25VD(40) + 0.10VD(50)
= 0.10(25) +0.25(75) + 0.30(100)
+0.25(80) +0.10(70)
= 78.25 visitor-days per day

(6.4)
Clearly, the visitation  rate,
VD = 78.25, the visitation rate corresponding to
the average pool level VD(L) = 100, and the
worst-case assessment VD(Ly,,,) = 25, are very
different.

The median and the most likely are other
measures that characterize a data set. They have
the advantage that they are less influenced by
extreme outliers. For the symmetric data set
shown in Table 6.1, the median, most likely, and
the mean are the same, namely 30. But if instead
the probabilities of the respective pool levels were
0.30, 0.25, 0.20, 0.15, and 0.10, (instead of 0.10,
0.25, 0.30, 0.25, 0.10) the expected value or mean
is 25, the value having the highest probability of
occurring (the most likely) is 10, and the median
or value that is greater or equal to half of the other
values and less than or equal to the other half of
the values in the data set is 20.

average
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Thus using only average values in a complex
model can produce a poor representation of both
the average performance and the possible per-
formance range. When important quantities are
uncertain, one should evaluate both the expected
performance of a project and the risk and possi-
ble magnitude of project failures and their
consequences.

This chapter reviews many of the methods of
probability and statistics that are useful in
water resources planning and management.
Section 6.2 reviews the important concepts and
methods of probability and statistics that are
needed in this and other chapters of this book.
Section 6.3 introduces several probability dis-
tributions that are often used to model or
describe uncertain quantities. The section also
discusses methods for fitting these distributions
using historical information, and methods of
assessing whether the distributions are adequate
representations of the data. Sections 6.4, 6.5,
and 6.6 expand upon the use of these distribu-
tions, and discuss alternative parameter estima-
tion methods.

Section 6.7 presents the basic ideas and con-
cepts of stochastic processes or time series.
These are used to model streamflows, rainfall,
temperature, or other phenomena whose values
change with time. The section contains a
description of Markov chains, a special type of
stochastic process used in many stochastic opti-
mization and simulation models. Section 6.8
illustrates how synthetic flows and other time
series inputs can be generated for stochastic
simulations. The latter is introduced with an
example in Sect. 6.9.

Many topics receive only brief treatment here.
Readers desiring additional information should
consult applied statistical texts such as Benjamin
and Cornell (1970), Haan (1977), Kite (1988),
Stedinger et al. (1993), Kottegoda and Rosso
(1997), Ayyub and McCuen (2002), and
Pishro-Nik (2014).
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6.2 Probability Concepts
and Methods

This section introduces basic concepts of proba-
bility and statistics. These are used throughout
this chapter and in later chapters in the book.

6.2.1 Random Variables

and Distributions

A basic concept in probability theory is that of
the random variable. A random variable is a
function whose value cannot be predicted with
certainty. Examples of random variables are
(1) the number of years until the flood stage of a
river washes away a small bridge, (2) the number
of times during a reservoir’s life that the level of
the pool will drop below a specified level, (3) the
rainfall depth next month, and (4) next year’s
maximum flow at a gage site on an unregulated
stream. The values of all of these quantities
depend on events that are not knowable before
the event has occurred. Probability can be used to
describe the likelihood these random variables
will equal specific values or be within a given
range of specific values.

The first two examples illustrate discrete ran-
dom variables, random variables that take on
values in a discrete set (such as the positive
integers). The second two examples illustrate
continuous random variables. Continuous ran-
dom variables take on values in a continuous set.
A property of all continuous random variables is
that the probability that they equal any specific
number is zero. For example, the probability that
the total rainfall depth in a month will be exactly
5.0 cm is zero, while the probability that the total
rainfall will lie between 4 and 6 cm can be non-
zero. Some random variables are combinations of
continuous and discrete random variables.

Let X denote a random variable and x a pos-
sible value of that random variable X. Random
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variables are generally denoted by capital letters
and particular values they take on by lowercase
letters. For any real-valued random variable X, its
cumulative distribution function Fx(x), often
denoted as just the cdf, equals probability that the
value of X is less than or equal to a specific value
or threshold x
Fx(x) = Pr[X <x] (6.5)
This cumulative distribution function Fx(x) is
a non-decreasing function of x because

PriX <x]< Pr[X<x+9] foro >0 (6.6)
In addition,
lir+n Fx(x) =1 (6.7)
and
liI_n Fx(x)=0 (6.8)

The first limit equals 1 because the probability
that X takes on some value less than infinity must
be unity; the second limit is zero because the
probability that X takes on no value must be zero.

If X is a real-valued discrete random vari-
able that takes on specific values xi, xp, ...,
the probability mass function px(x;) is the prob-
ability X takes on the value x;. Thus one would
write

px(x;) = Pr[X = xi (6.9)

The value of the cumulative distribution
function Fy(x) for a discrete random variable is
the sum of the probabilities of all x; that are less
than or equal to x.

Fx(x) = px(x)

xi <x

(6.10)

Figure 6.1 illustrates the probability mass
function px(x;) and the cumulative distribution
function of a discrete random variable.

The probability density function fx(x) for a
continuous random variable X is the analogue of
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the probability mass function of a discrete ran-
dom variable. The probability density function,
often called the pdf, is the derivative of the
cumulative distribution function so that

o de(.x)
- dx

Jx(x)

>0 (6.11)

The area under a probability density function

always equals 1.
+ o0
JECE

If @ and b are any two constants, the cumu-
lative distribution function or the density func-
tion may be used to determine the probability
that X is greater than a and less than or equal to
b where

(6.12)

b
Prla<X <b] = Fy(b) — Fy(a) / Fe(x)dx

a

(6.13)

The probability density function specifies the
relative frequency with which the value of a
continuous random variable falls in different
intervals.

Life is seldom so simple that only a single
quantity is uncertain. Thus, the joint probability
distribution of two or more random variables
can also be defined. If X and Y are two con-
tinuous real-valued random variables, their joint
cumulative distribution function is

Fxy(x,y) =Pr[X<xand Y <y)]

/x /) Sy (u,v)dudv  (6.14)

-0 —0

If two random variables are discrete, then

Fxy(x,y) = Z pry(xn)’i)

X <xyi<y

(6.15)

where the joint probability mass function is
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pxy(xi,y,‘) = PT[X = X, andY = y,] (616)

If X and Y are two random variables, and the
distribution of X is not influenced by the value
taken by Y, and vice versa, the two random vari-
ables are said to be independent. Independence is
an important and useful idea when attempting to
develop a model of two or more random variables.
For independent random variables

Prla<X <band c<Y <d]
Pr

—Prla<X<b|Prlc<Y<d]  (6.17)

for any a, b, ¢, and d. As a result,

Fyy(x,y) = Fx(x)Fy(y) (6.18)
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which implies for continuous random variables
that

Sy (x,5) = fx (0)fy () (6.19)
and for discrete random variables that
pxy(x,y) = px(x)pr(y) (6.20)

Other useful concepts are those of the mar-
ginal and conditional distributions. If X and Y are
two random variables whose joint cumulative
distribution function Fy(x, y) has been specified,
then Fy(x), the marginal cumulative distribution
of X, is just the cumulative distribution of X ig-
noring Y. The marginal cumulative distribution
function of X equals

—»Fx () ;\

00 1 1 1 1 1 1 1 1 1 1
possible values of a random variable X —» X

1.0

— )

0.0 1 1 1 1 1 1 1 1
possible values of a random variable X — X

E020527a

=}
1

—> Fx (x)

OO 1 1 1 1 1 1 1 1 1
possible values of a random variable X —% x

1.0

—» py )

oL e

possible values of a random variable X —» X/

Fig. 6.1 Cumulative distribution and probability density or mass functions of random variables: a continuous

distributions; b discrete distributions
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Fx(x) =Pr[X <x] = lim Fxy(x,y) (6.21)
y—00

where the limit is equivalent to letting Y take on

any value. If X and Y are continuous random

variables, the marginal density of X can be

computed from

+ 00
x) = / Fer(x,y)dy

The conditional cumulative distribution func-
tion is the cumulative distribution function for
X given that Y has taken a particular value
y. Thus the value of Y may have been observed
and one is interested in the resulting conditional
distribution, for the so far unobserved value of
X. The conditional cumulative distribution func-
tion for continuous random variables is given by

(6.22)

f oS5, y)d
H)
(6.23)

Fypy(xly) = PrlX <x|Y =] =

It follows that the conditional density function
is

Jxr(x,)
fr(y)

Far(xly) = (6.24)

For discrete random variables, the probability
of observing X = x, given that Y = y equals

_ Py (x y)

These results can be extended to more than
two random variables. See Kottegoda and Rosso
(1997) for a more advanced discussion.

6.2.2 Expected Values

Knowledge of the probability density function of a
continuous random variable, or of the probability
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mass function of a discrete random variable,
allows one to calculate the expected value of any
function of the random variable. Such an expec-
tation may represent the average rainfall depth,
average temperature, average demand shortfall, or
expected economic benefits from system opera-
tion. If g is a real-valued function of a continuous
random variable X, the expected value of g(X) is

+ 00
Ble()) = [ stiar  (626)
—00
whereas for a discrete random variable
(6.27)

= glx)px(x)

E[ ] is called the expectation operator. It has
several important properties. In particular, the
expectation of a linear function of X is a linear
function of the expectation of X. Thus if a and
b are two nonrandom constants,

Ela+ bX] = a+ bE[X] (6.28)

The expectation of a function of two random
variables is given by

+00 +00
Elg(X,Y)] = / / g2, y)fir (x,y)dxdy

or

- Z Z g(xi, yi)pxy (xi,yi) (6.29)

If X and Y are independent, the expectation of
the product of a function /() of X and a function
g(-) of Y is the product of the expectations

(6.30)

This follows from substitution of Egs. 6.19
and 6.20 into Eq. 6.29.
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6.2.3 Quantiles, Moments, and Their
Estimators

While the cumulative distribution function pro-
vides a complete specification of the properties of
a random variable, it is useful to use simpler and
more easily understood measures of the central
tendency and range of values that a random vari-
able may assume. Perhaps the simplest approach
to describing the distribution of a random variable
is to report the value of several quantiles. The pth
quantile of a random variable X is the smallest
value x, such that X has a probability p of
assuming a value equal to or less than x,

Pr[X <x,] <p <Pr[X <x,) (6.31)
Equation 6.31 is written to insist if at some
point x,, the cumulative probability function
jumps from less than p to more than p, then that
value x, will be defined as the pth quantile even
though Fy(x,) # p. If X is a continuous random
variable, then in the region where fx(x) > 0O, the
quantiles are uniquely defined and are obtained

by solution of
Fx(x,) =p (6.32)

Frequently reported quantiles are the median
Xo.50 and the lower and upper quartiles x5 and
Xo75. The median describes the location or cen-
tral tendency of the distribution of X because the
random variable is, in the continuous case,
equally likely to be above as below that value.
The interquartile range [x( s, Xo.75] provides an
easily understood description of the range of
values that the random variable might assume.
The pth quantile is also the 100 p percentile.

In a given application, particularly when
safety is of concern, it may be appropriate to use
other quantiles. In floodplain management and
the design of flood control structures, the
100-year flood x99 is often the selected design
value. In water quality management, a river’s
minimum seven-day-average low flow expected
once in 10 years is often used as the critical
planning value: Here the one-in-ten year value is
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the 10 percentile of the distribution of the annual
minima of the seven-day average flows.

The natural sample estimate of the median
Xo.50 1 the median of the sample. In a sample of
size n where Xy < xg) < - LX) are the
observed observations ordered by magnitude,
and for a nonnegative integer k such that n = 2k
(even) or n = 2k + 1 (odd), the sample estimate
of the median is

P X(k+1) forn=2k+1
0.50 %[x(k)+x(k+l)j| forn =2k

(6.33)

Sample estimates of other quantiles may be
obtained using x(; as an estimate of x, for g =
i/(n + 1) and then interpolating between obser-
vations to obtain X, for the desired p. This only
works for 1/(n + 1) <p <n/(n+ 1) and can
yield rather poor estimates of x,, when (n + 1)p is
near either 1 or n. An alternative approach is to
fit a reasonable distribution function to the
observations, as discussed in Sects. 6.3.1 and
6.3.2, and then estimate x,, using Eq. 6.32, where
Fx(x) is the fitted distribution.

Another simple and common approach to
describing a distribution’s center, spread, and
shape is by reporting the moments of a distri-
bution. The first moment about the origin uy is
the mean of X and is given by

+ o0

i =B = [ el

—00

(6.34)

Moments other than the first are normally
measured about the mean. The second moment
measured about the mean is the variance, deno-
ted Var(X) or ag(, where

2 2
o} = Var(X) = E[(X — iy} (6.35)

The standard deviation oy is the square root
of the variance. While the mean uy is a measure
of the central value of X, the standard deviation
ox is a measure of the spread of the distribution
of X about its mean .
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Another measure of the variability in X is the
coefficient of variation,

cvy =2

- (6.36)

The coefficient of variation expresses the
standard deviation as a proportion of the mean. It
is useful for comparing the relative variability of
the flow in rivers of different sizes, or of rainfall
variability in different regions, which are both
strictly positive values.

The third moment about the mean denoted Ay,
measures the asymmetry or skewness of the
distribution

ix = E[(X — ﬂx)3] (6.37)

Typically, the dimensionless coefficient of
skewness yy is reported rather than the third
moment Ay. The coefficient of skewness is the
third moment rescaled by the cube of the stan-
dard deviation so as to be dimensionless and
hence unaffected by the scale of the random
variable

=% (6.38)

Streamflows and other natural phenomena that
are necessarily nonnegative often have distribu-
tions with positive skew coefficients, reflecting
the asymmetric shape of their distributions.

When the distribution of a random variable is
not known, but a set of observations {xi, ..., x,}
is available, the moments of the unknown dis-
tribution of X can be estimated based on the
sample values using the following equations.

The sample estimate of the mean

X=> Xi/n (6.39a)
i=1
The sample estimate of the variance
. 1 72
62 =582 = mz (X; —X)*  (6.39b)
i=1

6 An Introduction to Probability, Statistics, and Uncertainty

The sample estimate of skewness

n

L )
)“X_(n—l)(n—z)z(xl X)

i=1

(6.39¢)

The sample estimate of the coefficient of

variation
CVy = Sx/X (6.39d)

The sample estimate of the coefficient of

skewness
Gy = Ax/S3 (6.39)

The sample estimate of the mean and variance
are often denoted ¥ and sy. All of these sample
estimators only provide estimates. Unless the
sample size n is very large, the difference between
the estimators from the true values of iy, 0}2(7 Ax,
CVy, and yx may be large. In many ways, the field
of statistics is about the precision of estimators of
different quantities. One wants to know how well
the mean of 20 annual rainfall depths describes the
true expected annual rainfall depth, or how large
the difference between the estimated 100-year
flood and the true 100-year flood is likely to be.

As an example of the calculation of moments,
consider the flood data in Table 6.2. These data
have the following sample moments:

X =1549.2
sy = 813.5

CVy = 0.525
9y = 0.712

As one can see, the data are positively skewed
and have a relatively large coefficient of variance.

When discussing the accuracy of sample
estimates, two quantities are often considered,
bias and variance. An estimator 0 of a known or
unknown quantity 0 is a function of the values of
the random variable X, ..., X,, that will be
available to estimate the value of 0, 0 may be

written @[Xl, X5, ..., X,,] to emphasize that 0
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Table 6.2 Annual Maximum Discharges on Magra River, Italy, at Calamazza, 1930-1970

1931 1150

1933 420

1935 2530

1937 1220

1939 1410

1941 2470

1943 586

1946 1040

1948 1070

1952 2360

1954 1900

1956 674

1958 1500

1960 3480

1962 809

1964 1510

1966 1880

1968 1920

E021101b

1950 1430

The value for 1945 ismissing

itself is a random variable because its value
depends on the sample values of the random

variable that will be observed. An estimator 0 of

a quantity 0 is biased if E[0] # 0 and unbiased if
E[0] = 0. The quantity {E[0] — 0} is generally
called the bias of the estimator.

An unbiased estimator has the property that its
expected value equals the value of the quantity to
be estimated. The sample mean is an unbiased
estimate of the population mean uyx because
1 n
2%

i—1

E[X|=E =%Zn:E[Xi]:uX
i=1

6.40)

—~

1970 1490

The estimator S of the variance of X is an
unbiased estimator of the true variance % for
independent observations (Benjamin and Cornell
1970):

E[SY] = 0% (6.41)

However, the corresponding estimator of the
standard deviation, Sy, is in general a biased
estimator of o, because

E[Sx] # ox (6.42)

The second important statistic often used to

assess the accuracy of an estimator 0 is the
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variance of the estimator Var(f), which equals

E{(0— E[0])*}. For the mean of a set of inde-
pendent observations, the variance of the sample
mean is

— 03

Var(X) = 7)‘ (6.43)

It is common to call g, /+/n the standard error

of X rather than its standard deviation. The

standard error of an average is the most com-
monly reported measures of the precision.

The bias measures the difference between the
average value of an estimator and the quantity to
be estimated. The variance measures the spread
or width of the estimator’s distribution. Both
contribute to the amount by which an estimator
deviates from the quantity to be estimated. These
two errors are often combined into the mean
square error. Understanding that 6 is fixed, and

the estimator 0 is a random variable, the mean
squared error is the expected value of the squared
distance (error) between the two

MSE(O) — E[(() _ 0)2]
- {E[i] - 9}2+E{ (@_E[@DZ}

— [Bias]* + Var (0)
(6.44)

where [Bias] is E(0) — 6. Equation 6.44 shows
that the MSE, equal to the expected average

squared deviation of the estimator 0 from the true
value of the parameter 6, can be computed as the
bias squared plus the variance of the estimator.

MSE is a convenient measure of how closely 0
approximates 6 because it combines both bias
and variance in a logical way.

Estimation of the coefficient of skewness y,
provides a good example of the use of the MSE
for evaluating the total deviation of an estimate
from the true population value. The sample
estimate )y of 7y is often biased, has a large
variance, and was shown by Kirby (1974) to be
bounded so that
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x| < vn (6.45)

where n is the sample size. The bounds do not
depend on the true skew yy. However, the bias
and variance of Jy do depend on the sample size
and the actual distribution of X. Table 6.3 con-
tains the expected value and standard deviation
of the estimated coefficient of skewness Jy when
X has either a normal distribution, for which
yx = 0, or a gamma distribution with yy = 0.25,
0.50, 1.00, 2.00, or 3.00. These values are
adapted from Wallis et al. (1974a, b) who
employed moment estimators slightly different
than those in Eq. 6.39a.

For the normal distribution, E[jx] =0 and
Var[jx] = 5/n. In this case, the skewness esti-
mator is unbiased but highly variable. In all the
other cases in Table 6.3 it is also biased.

To illustrate the magnitude of these errors,
consider the mean square error of the skew
estimator }y calculated from a sample of size 50
when X has a gamma distribution with yx = 0.50,
a reasonable value for annual streamflows. The
expected value of 9y is 0.45; its variance equals
(0.37)2, its standard deviation squared. Using
Eq. 6.44, the mean square error of Jy is

MSE(jy) = (0.45 — 0.50)* + (0.37)°
= 0.0025 +0.1369 = 0.139 = 0.14

(6.46)

An unbiased estimate of yy is simply
(0.50/0.45))y. Here the estimator provided by
Eq. 6.39a has been scaled to eliminate bias. This
unbiased estimator has mean squared error

0509\ »  [(0.50 :
MSE< 045 > = (0.50 — 0.50)" + K%> (0.37)}

=0.169 =2 0.17
(6.47)

The mean square error of the unbiased esti-
mator of )y is larger than the mean square error
of the biased estimate. Unbiasing }y results in a
larger mean square error for all the cases listed in
Table 6.3 except for the normal distribution for
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Table 6.3 Sampling properties of coefficient of skewness estimator

gamma ¥ x = 0.25

Tx = 1.00

¥Yx = 3.00

0.15 0.19 0.23 0.23

0.60 0.76 0.88 0.93

1.59 1.97 2.32 2.54

gamma ¥ x = 0.25

<
x
Il

1.00

Yx = 3.00

0.69 0.52 0.35 0.28

0.70 0.57 0.44 0.38

0.74 0.76 0.77 0.77

EO2110Ic

Source Wallis et al. (1974b) who divided just by n in the estimators of the moments, whereas in Eqs. 6.39b and 6.39¢c
we use the generally adopted coefficients of 1/(n — 1) and n/(n — 1)(n — 2) for the variance and skew

which yx = 0, and the gamma distribution with
yx = 3.00.

As shown here for the skew coefficient, biased
estimators often have smaller mean square errors
than unbiased estimators. Because the mean
square error measures the total average deviation

of an estimator from the quantity being esti-
mated, this result demonstrates that the strict or
unquestioning use of unbiased estimators is not
advisable. Additional information on the sam-
pling distribution of quantiles and moments is
contained in Stedinger et al. (1993).
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6.2.4 L-Moments and Their
Estimators

L-moments are another way to summarize the
statistical properties of hydrologic data based on
linear combinations of the original sample
(Hosking 1990). Recently, hydrologists have
found that regionalization methods (to be
discussed in Sect. 6.5) using L-moments are
superior to methods using traditional moments
(Hosking and Wallis 1997; Stedinger and Lu
1995). L-moments have also proved useful for
construction of goodness-of-fit tests (Hosking
et al. 1985; Chowdhury et al. 1991; Fill and
Stedinger 1995), measures of regional homo-
geneity and distribution selection methods (Vogel
and Fennessey 1993; Hosking and Wallis 1997).
The first L-moment designated as 4, is simply
the arithmetic mean
1 = E[X] (6.48)
Now let Xj,) be the ith largest observation in
a sample of size n (i = n corresponds to the lar-
gest). Then, for any distribution, the second
L-moment, A,, is a description of scale based
upon the expected difference between two ran-
domly selected observations.
Ja = (1/2E[Xan) = Xqpp)] (6.49)
Similarly, L-moment measures of skewness
and kurtosis use three and four randomly selected
observations, respectively.

I3 = (1/3)E[X(y3) — 2X(3) + Xapp)]  (6.50)

Ay = (1/AE [X(aa) — 3X(3y0) +3X214) — X(1j0)]
(6.51)

Sample estimates are often computed using
intermediate statistics called probability weighted
moments (PWMs). The rth probability weighted
moment is defined as
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B, = E{X[F(X)]'} (6.52)

where F(X) is the cumulative distribution func-
tion of X. Recommended (Landwehr et al. 1979;
Hosking and Wallis 1995) unbiased PWM esti-
mators, b,, of 5, are computed as

by =X
b= n(nl— 1) & U= DXy

1 . .
szmZ(I—l)(I—z)X(H

J=3

(6.53)

These are examples of the general formula for
computing estimators b, of £,.

o= (o (")
TS (1) e

i=r

forr=1, ...,n—1.
L-moments are easily calculated in terms of
probability weighted moments (PWMs) using

21 = PBo

lo =2, — By

23 =6, —6f,+f,

44 = 2085 — 30, + 128, — f

(6.55)

Formulas for directly calculating L-moment
estimators, b, of 5, are provided by Wang (1997).
Measures of the coefficient of variation, skew-
ness, and kurtosis of a distribution can be com-
puted with L-moments, as they can with
traditional product moments. Whereas skew pri-
marily measures the asymmetry of a distribution,
the kurtosis is an additional measure of the
thickness of the extreme tails. Kurtosis is par-
ticularly useful for comparing symmetric distri-
butions that have a skewness coefficient of
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Table 6.4 Definitions of dimensionless product-moment and L-moment ratios

name

common symbol

product-moment ratios

coefficient of

variation CVy
skewness Yx
kurtosis 5

L-moment ratios

L-coefficient of

variation * L-CV, T2
skewness L-skewness, T3
kurtosis L-kurtosis, T4

* Hosking and Wallis (1997) use t instead of 1, to represent the L-CV ratio

zero. Table 6.4 provides definitions of the tradi-
tional coefficient of variation, coefficient of
skewness, and coefficient of kurtosis, as well as
the L-moment, L-coefficient of variation,
L-coefficient of skewness, and L-coefficient of
kurtosis.

The flood data in Table 6.2 can be used to
provide an example of L-moments. Equa-
tion 6.53 yields estimates of the first three
Probability Weighted Moments

bo = 1549.20
by = 1003.89 (6.56)
by = 759.02

Recall by is just the sample average x. The
sample L-moments are easily calculated using
the probability weighted moments (PWMs). One
obtains
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definition

Ox /px

E[(X-ux)’1/ox3

E[(X-p)*]/ox?

Wy

A3/ Ny

A4/ X2

J1 = by = 1549

Ja = 2by — by = 458 (6.57)

J3 = 6by — 6b; + by = 80

Thus the sample estimates of the L-Coefficient
of Variation, #,, and L-Coefficient of Skewness,
t3, are

tp =0.295

6.58
3 =0.174 ( )

6.3 Distributions of Random Events

A frequent task in water resources planning is the
development of a model of some probabilistic or
stochastic phenomena such as streamflows, flood
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flows, rainfall, temperatures, evaporation, sedi-
ment or nutrient loads, nitrate or organic com-
pound concentrations, or water demands. This
often requires that one fit a probability distribu-
tion function to a set of observed values of the
random variable. Sometimes, one’s immediate
objective is to estimate a particular quantile of
the distribution, such as the 100-year flood,
50-year 6-h-rainfall depth, or the minimum
seven-day-average expected once-in-10-year
flow. Then the fitted distribution and its statisti-
cal parameters can characterize that random
variable. In a stochastic simulation, fitted distri-
butions are used to generate possible values of
the random variable in question.

Rather than fitting a reasonable and smooth
mathematical distribution, one could use the
empirical distribution represented by the data to
describe the possible values that arandom variable
may assume in the future and their frequency. In
practice, the true mathematical form for the dis-
tribution that describes the events is not known.
Moreover, even if it was, its functional form may
have too many parameters to be of much practical
use. Thus using the empirical distribution repre-
sented by the data itself has substantial appeal.

Generally the free parameters of the theoretical
distribution are selected (estimated) so as to make
the fitted distribution consistent with the available
data. The goal is to select a physically reasonable
and simple distribution to describe the frequency
of the events of interest, to estimate that distri-
bution’s parameters, and ultimately to obtain
quantiles, performance indices, and risk estimates
of satisfactory accuracy for the problem at hand.
Use of a theoretical distribution does have several
advantages over use of the empirical distribution

1. It presents a smooth interpretation of the
empirical distribution. As a result quantiles,
performance indices, and other statistics
computed using the fitted distribution should
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be more easily estimated compared to those
computed from the empirical distribution.

2. It provides a compact and easy to use repre-
sentation of the data.

3. It is likely to provide a more realistic
description of the range of values that the
random variable may assume and their like-
lihood; for example, using the empirical dis-
tribution one often assumes that no values
larger or smaller than the sample maximum or
minimum can occur. For many situations this
is unreasonable.

4. Often one needs to estimate the likelihood of
extreme events that lie outside of the range of
the sample (either in terms of x values or in
terms of frequency); such extrapolation makes
little sense with the empirical distribution.

5. In many cases one is not interested in X, but
instead is interested in derived variables
Y that are functions of X. This could be a
performance function for some system. If Y is
the performance function, interest might be
primarily in its mean value E[Y], or the
probability some standard is exceeded, Pr
{Y > standard}. For some theoretical X-dis-
tributions, the resulting Y-distribution may be
available in closed form making the analysis
rather simple. (The normal distribution works
with linear models, the lognormal distribution
with product models, and the gamma distri-
bution with queuing systems.)

This section provides a brief introduction to
some useful techniques for estimating the
parameters of probability distribution functions
and determining if a fitted distribution provides a
reasonable or acceptable model of the data.
Subsections are also included on families of
distributions based on the normal, gamma, and
generalized-extreme-value distributions. These
three families have found frequent use in water
resource planning (Kottegoda and Rosso 1997).
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6.3.1 Parameter Estimation

Given a set of observations to which a distribu-
tion is to be fit, one first selects a distribution
function to serve as a model of the distribution of
the data. The choice of a distribution may be
based on experience with data of that type, some
understanding of the mechanisms giving rise to
the data, and/or examination of the observations
themselves. One can then estimate the parame-
ters of the chosen distribution and determine if
the observed data could have been drawn from
the fitted distribution. If not, the fitted distribu-
tion is judged to be unacceptable.

In many cases, good estimates of a distribu-
tion’s parameters are obtained by the maximum
likelihood-estimation procedure. Given a set of
n independent observations {xi, ..., x,} of a
continuous random variable X, the joint proba-
bility density function for the observations is

Jx0 X0 X5 -+ X, (X1« oy X0[0)

= fx(x1]0) - fx(x2]0) .. fx (xal0)  (6.59)
where 6 is the vector of the distribution’s
parameters.

The maximum likelihood estimator of @ is that
vector which maximizes Eq. 6.59 and thereby
makes it as likely as possible to have observed
the values {xi, ..., x,,}.

Considerable work has gone into studying the
properties of maximum likelihood parameter
estimates. Under rather general -conditions,
asymptotically the estimated parameters are
normally distributed, unbiased, and have the
smallest possible variance of any asymptotically
unbiased estimator (Bickel and Doksum 1977).
These, of course, are asymptotic properties, valid
for large sample sizes n. Better estimation pro-
cedures, perhaps yielding biased parameter esti-
mates, may exist for small sample
Stedinger (1980) provides such an example. Still,
maximum likelihood procedures are to be highly

sizes.
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recommended with moderate and large samples,
even though the iterative solution of nonlinear
equations is often required.

An example of the maximum likelihood pro-
cedure for which closed-form expressions for the
parameter estimates are obtained is provided by
the lognormal distribution. The probability den-
sity function of a lognormally distributed random
variable X is

felx) = —

— o ep{ = i) - P

(6.60)

Here the parameters x and o” are the mean and
variance of the logarithm of X, and not of X itself.
Maximizing the logarithm of the joint density
for {x;, ..., x,,} is more convenient than maxi-
mizing the joint probability density itself. Hence

the problem can be expressed as the maximiza-
tion of the log-likelihood function

L= [ﬁﬂxim, o>]
:znjlnf(xi\u,a)
i=1
= — n 11’1 X,‘\/ﬂ
> in(xv2r)

—nln(o) — 2—(1)_22: (In(x;) — H]2

(6.61)

The maximum can be obtained by equating to
zero the partial derivatives 9L/9u and 9L/9c
whereby one obtains

(6.62)

These equations yield the estimators
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—_

SN
:—Z [In(x;)

The second-order conditions for a maximum
are met and these values do maximize Eq. 6.59. It
is useful to note that if one defines a new random
variable Y = In(X), then the maximum likelihood
estimates of the parameters ¢ and 02, which are the
mean and variance of the Y distribution, are the
sample estimates of the mean and variance of Y

(6.63)

(6.64)

The correction [(n — 1)/n] in this last equation is
often neglected.

The second commonly used parameter esti-
mation procedure is the method of moments. The
method of moments is often a quick and simple
method for obtaining parameter estimates for
many distributions. For a distribution withm = 1,
2, or 3 parameters, the first m moments of postu-
lated distribution in Egs. 6.34, 6.35, and 6.37 are
equated to the estimates of those moments calcu-
lated using Eqs. 6.39a. The resulting nonlinear
equations are solved for the unknown parameters.

For the lognormal distribution, the mean and
variance of X as a function of the parameters u
and o are given by

1 2
Hy =exp| p+ 50

ai = exp(Z,u—i— 02) [exp(az) - 1]

(6.65)

Substituting x for uy and s)% for 6)2( and solving
for 4 and o” one obtains
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= In(1+s3/%%)
(6.66)

X 1
f=In|——u] =Inx—=4’
g <«/_1 +—s§/xz> 2

The data in Table 6.2 provide an illustration
of both fitting methods. One can easily compute
the sample mean and variance of the logarithms
of the flows to obtain

L= 17.202

6.67
62 =0.3164 = (6.67)

(0.5625)*

Alternatively, the sample mean and variance
of the flows themselves are

1549.2

X =
6.68
52 = 661,800 = (813.5)° (6.68)
Substituting those two values in Eq. 6.66
yields

jL=17.224

62 = 0.2435 = (0.4935)* (6.69)

Method of moments and maximum likelihood
are just two of many possible estimation meth-
ods. Just as method of moments equates sample
estimators of moments to population values and
solves for a distribution’s parameters, one can
simply equate L-moment estimators to popula-
tion values and solve for the parameters of a
distribution. The resulting method of L-moments
has received considerable attention in the
hydrologic literature (Landwehr et al. 1978;
Hosking et al. 1985; 1987; Hosking 1990; Wang
1997). It has been shown to have significant
advantages when used as a basis for regional-
ization procedures that will be discussed in
Sect. 6.5 (Lettenmaier et al. 1987; Stedinger and
Lu 1995; Hosking and Wallis 1997).
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Bayesian procedures provide another approach
that is related to maximum likelihood estimation.
Bayesian inference employs the likelihood func-
tion to represent the information in the data. That
information is augmented with a prior distribution
that describes what is known about constraints on
the parameters and their likely values beyond the
information provided by the recorded data avail-
able at a site. The likelihood function and the prior
probability density function are combined to
obtain the probability density function that

describes the posterior distribution of the
parameters
Jo(O0lx1,x2, .oy X)) < fix(x1, %2, - -, X,]0)E(0)
(6.70)

The symbol & means “proportional to” and
&) is the probability density function for the
prior distribution for # (Kottegoda and Rosso
1997). Thus, except for a constant of propor-
tionality, the probability density function
describing the posterior distribution of the
parameter vector @ is equal to the product of the
likelihood function fx(x;, xs, ..., x,|@) and the
probability density function for the prior distri-
bution &(0) for 6.

Advantages of the Bayesian approach are that
it allows the explicit modeling of uncertainty in
parameters (Stedinger 1997; Kuczera 1999), and
provides a theoretically consistent framework for
integrating systematic flow records with regional
and other hydrologic information (Vicens et al.
1975; Stedinger 1983; and Kuczera 1983).
Martins and Stedinger (2000) illustrate how a
prior distribution can be used to enforce realistic
constraints upon a parameter as well as providing
a description of its likely values. In their case use
of a prior of the shape parameter ¥ of a GEV
distribution allowed definition of generalized
maximum likelihood estimators that over the
k-range of interest performed substantially better
than maximum likelihood, moment, and
L-moment estimators.

While Bayesian methods have been available
for decades, the computational challenge posed
by the solution of Eq. 6.70 has been an obstacle
to their use. Solutions to Eq. 6.70 have been
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available for special cases such as normal data,
and binomial and Poisson samples (Raiffa and
Schlaifier 1961; Benjamin and Cornell 1970;
Zellner 1971). However, a new and very general
set of Markov Chain Monte Carlo (MCMC)
procedures allow numerical computation of the
posterior distributions of parameters for a very
broad class of models (Gilks et al. 1996). As a
result, Bayesian methods are now becoming
much more popular, and are the standard
approach for many difficult problems that are not
easily addressed by traditional methods (Gelman
et al. 1995; Carlin and Louis 2000). The use of
Monte Carlo Bayesian methods in flood fre-
quency analysis, rainfall-runoff modeling, and
evaluation of environmental pathogen concen-
trations are illustrated by Wang (2001), Bates
and Campbell (2001) and Crainiceanu et al.
(2002) respectively.

Finally, a simple method of fitting flood fre-
quency curves is to plot the ordered flood values
on special probability paper and then to draw a
line through the data (Gumbel 1958). Even
today, that simple method is still attractive when
some of the smallest values are zero or unusually
small, or have been censored as will be discussed
in Sect. 6.4 (Kroll and Stedinger 1996). Plotting
the ranked annual maximum series against a
probability scale is always an excellent and rec-
ommended way to see what the data look like
and for determining whether a fitted curve is or is
not consistent with the data (Stedinger et al.
1993).

Statisticians and hydrologists have investi-
gated which of these methods most accurately
estimates the parameters themselves or the quan-
tiles of the distribution (Stedinger 1997). One also
needs to determine how accuracy should be
measured. Some studies have used average
squared deviations, some have used average
absolute weighted deviations with different
weights on under- and over-estimation, and some
have wused the squared deviations of the
log-quantile estimator (Slack et al. 1975; Kroll
and Stedinger 1996). In almost all cases, one is
also interested in the bias of an estimator, which is
the average value of the estimator minus the true
value of the parameter or quantile being estimated.
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Special estimators have been developed to com-
pute design events that on average are exceeded
with the specified probability, and have the
anticipated risk of being exceeded (Beard 1960,
1997; Rasmussen and Rosbjerg 1989, 1991a, b;
Stedinger 1997; Rosbjerg and Madsen 1998).

6.3.2 Model Adequacy

After estimating the parameters of a distribution,
some check of model adequacy should be made.
Such checks vary from simple comparisons of
the observations with the fitted model using
graphs or tables, to rigorous statistical tests.
Some of the early and simplest methods of
parameter estimation were graphical techniques.
Although quantitative techniques are generally
more accurate and precise for parameter estima-
tion, graphical presentations are invaluable for
comparing the fitted distribution with the obser-
vations for the detection of systematic or unex-
plained deviations between the two. The
observed data will plot as a straight line on
probability graph paper if the postulated distri-
bution is the true distribution of the observation.
If probability graph paper does not exist for the
particular distribution of interest, more general
techniques can be used.

Let x; be the ith largest value in a set of
observed values {x;} so that x;) < xp) < -+ <
Xg- The random variable X;, provides a rea-
sonable estimate of the pth quantile x, of the true
distribution of X for p = i/(n + 1). In fact, if one
thinks of the cumulative probability U; associated
with the random variable X;, U; = Fx(X;), then
if the observations X(;, are independent, the U,
have a beta distribution (Gumbel 1958) with
probability density function

n! i—1 n—i
fm(”)zm“ (I—u)
0<u<li

(6.71)
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This beta distribution has mean and variance
of

(6.72a)

and

i(n—i+1)

Vet = P 2)

(6.72b)

A good graphical check of the adequacy of a
fitted distribution G(x) is obtained by plotting the
observations x;, versus G '[i/(n + 1)] (Wilk and
Gnanadesikan 1968). Even if G(x) exactly
equaled the true X-distribution Fx[x], the plotted
points will not fall exactly on a 45-degree line
through the origin of the graph. This would only
occur if Fx[x] exactly equaled i/(n + 1) and
therefore each x;, exactly equaled F}l[i/(n + 1)].

An appreciation for how far an individual
observation x(; can be expected to deviate from
G '[il(n + 1)] can be obtained by plotting
G '[u%™] and G '[u{**], where u{®” and
u®?> are the upper and lower quantiles of the
distribution of U; obtained from integrating the
probability density function in Eq. 6.71. The
required incomplete beta function is also available
in many software packages, including Microsoft
Excel. Stedinger et al. (1993) report that u;, and
(I — u,)) fall between 0.052/n and 3(n + 1) witha
probability of 90%, thus illustrating the great
uncertainty associated with those values.

Figure 6.2a, b illustrate the use of this quan-
tile-quantile plotting technique by displaying the
results of fitting a normal and a lognormal
distribution to the annual maximum flows in
Table 6.2 for the Magra River, Italy, at Cala-
mazza for the years 1930-1970. The observa-
tions of X, given in Table 6.2, are
plotted on the vertical axis against the quantiles
G '[i/(n + 1)] on the horizontal axis.

A probability plot is essentially a scatter plot
of the sorted observations X, versus some
approximation of their expected or anticipated
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value, represented by G '(p;), where, as sug-
gested, p; = i/(n + 1). The p; values are called
plotting positions. A common alternative to i/
(n+1) is (i — 0.5)/n, which results from a
probabilistic interpretation of the empirical dis-
tribution of the data. Many reasonable plotting
position formula have been proposed based upon
the sense in which G™'(p;) should approximate
Xy The Weibull formula i/(n + 1) and the Hazen
formula (i — 0.5)/n bracket most of the reason-
able choices. Popular formulas are summarized
in Stedinger et al. (1993), who also discuss the
generation of probability plots for many distri-
butions commonly employed in hydrology.

Rigorous statistical tests are available for
trying to determine whether or not it is reason-
able to assume that a given set of observations
could have been drawn from a particular family
of distributions. Although not the most powerful
of such tests, the Kolmogorov—Smirnov test
provides bounds within which every observation
should lie if the sample is actually drawn from
the assumed distribution. In particular, for
G = FYy, the test specifies that

231

1
+ CQ()for every i}

(6.73)

where C,, is the critical value of the test at sig-
nificance level a. Formulas for C, as a function
of n are contained in Table 6.5 for three cases:
(1) when G is completely specified independent
of the sample’s values; (2) when G is the normal
distribution and the mean and variance are esti-
mated from the sample with x and sﬁ; and
(3) when G is the exponential distribution and the
scale parameter is estimated as 1/(x). Chowd-
hury et al. (1991) provide critical values for the
Gumbel and GEV distribution with known shape
parameter k. For other distributions, the values
obtained from Table 6.5 may be used to con-
struct approximate simultaneous confidence
intervals for every X;.

Figures 6.2 contain 90% confidence intervals
for the plotted points constructed in this manner.
For the normal distribution, the critical value of

C, equals 0.819/(\/n—0.01+0.85//n),

Table 6.5 Critical values* of Kolmogorov-Smirnov statistic as a function of sample size n

significacne level o

0.150 0.100 0.050 0.025 0.010

F, completely specified:
Co.(Vn+ 0.12 + 0.11 /Vn) 1.138 1224 1.358 1.480 1.628
Fy normal with mean and variance

estimated as X and s2
Co (Yn+ 0.01 + 0.85/Vn) 0.775 0.819 0.895 0.995 1.035
F exponential with scale parameter

b estimated as | / (x)
Cq+0.2/n)(Yn+ 0.26 + 0.5/Vn) 0.926 0990 1.094 1.190 1.308

values of Cg are calculated as follows:

for case 2 with o = 0.10, Cy, = 0.819/ (yn-0.01 + 0.85//n)
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Fig. 6.2 Plots of annual
maximum discharges of
Magra River, Italy, versus
quantiles of fitted a normal
and b lognormal
distributions
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where 0.819 corresponds to o = 0.10. For
n =40, one computes C, = 0.127. As can be
seen in Fig. 6.2a, the annual maximum flows are
not consistent with the hypothesis that they were
drawn from a normal distribution; three of the
observations lie outside the simultaneous 90%
confidence intervals for all points. This demon-
strates a statistically significant lack of fit. The
fitted normal distribution underestimates the
quantiles corresponding to small and large
probabilities while overestimating the quantiles
in an intermediate range. In Fig. 6.2b, deviations
between the fitted lognormal distribution and the
observations can be attributed to the differences
between Fx(x;) and i/(n + 1). Generally, the
points are all near the 45-degree line through the
origin, and no major systematic deviations are
apparent.

The Kolmogorov—Smirnov test conveniently
provides bounds within which every observation
on a probability plot should lie if the sample is
actually drawn from the assumed distribution, and
thus is useful for visually evaluating the adequacy
of a fitted distribution. However, it is not the most
powerful test available for evaluating from which
of several families a set of observations is likely
to have been drawn. For that purpose several
other more analytical tests are available (Filliben
1975; Hosking 1990; Chowdhury et al. 1991;
Kottegoda and Rosso 1997).

The Probability Plot Correlation test is a
popular and powerful test of whether a sample
has been drawn from a postulated distribution,
though it is often weaker than alternative tests at
rejecting thin-tailed alternatives (Filliben 1975;
Fill and Stedinger 1995). A test with greater
power has a greater probability of correctly
determining that a sample is not from the pos-
tulated distribution. The Probability Plot Corre-
lation Coefficient test employs the correlation
r between the ordered observations x, and the
corresponding  fitted quantiles w; = G~ '(p),
determined by plotting positions p; for each x;.
Values of r near 1.0 suggest that the observations
could have been drawn from the fitted distribu-
tion: r measures the linearity of the probability
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plot providing a quantitative assessment of fit. If
X denotes the average value of the observations
and w denotes the average value of the fitted
quantiles, then

D 1 [ i) (6.74)

(S o -9 S o —")]

Table 6.6 provides critical values for r for the
normal distribution, or the logarithms of log-
normal variates, based upon the Blom plotting
position that has p; = (i — 3/8)/(n + 1/4). Values
for the Gumbel distribution are reproduced in
Table 6.7 for use with the Gringorten plotting
position p; = (i — 0.44)/(n + 0.12). The table
also applies to logarithms of Weibull variates
(Stedinger et al. 1993). Other tables are available
for the GEV (Chowdhury et al. 1991), the
Pearson type 3 (Vogel and McMartin 1991), and
exponential and other distributions (D’Agostion
and Stephens 1986).

L-moment ratios appear to provide
goodness-of-fit tests that are superior to both the
Kolmogorov—Smirnov and the Probability Plot
Correlation test (Hosking 1990; Chowdhury
et al. 1991; Fill and Stedinger 1995). For normal
data, the L-skewness estimator 73 (or t3) would
have mean zero and Var[73] = (0.1866 + 0.8/n)/
n, allowing construction of a powerful test of
normality against skewed alternatives using the
normally distributed statistic

Z =13//(0.1866 4 0.8 /n)/n (6.75)
with a reject region |Z] > z,.

Chowdhury et al. (1991) derive the sampling
variance of the L-CV and L-skewness estimators
7, and 73 as a function of x for the GEV distri-
bution. These allow construction of a test of
whether a particular data set is consistent with a
GEV distribution with a regionally estimated
value of x, or a regional x and CV. Fill and
Stedinger (1995) show that the 73 L-skewness
estimator provides a test for the Gumbel versus a
general GEV distribution using the normally
distributed statistic
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Table 6.6 Lower critical values of the probability plot correlation test statistic for the normal distribution using

pi = (@ — 3/8)/(n + 1/4) (Vogel 1987)

significance level

n 0.10
10 0.9347
15 0.9506
20 0.9600
30 0.9707
40 0.9767
50 0.9807
60 0.9835
75 0.9865

100 0.9893

300 0.99602

1,000 0.99854

Z = (13 — 0.17)/+/(0.2326 +0.70/n) /n
(6.76)

with a reject region |Z] > z,.

The literature is full of goodness-of-fit tests.
Experience indicates that among the better tests
there is often not a great deal of difference
(D’Agostion and Stephens 1986). Generation of
a probability plot is most often a good idea
because it allows the modeler to see what the
data look like and where problems occur. The
Kolmogorov—Smirnov test helps the eye interpret
a probability plot by adding bounds to a graph
illustrating the magnitude of deviations from a
straight line that are consistent with expected
variability. One can also use quantiles of a beta
distribution to illustrate the possible error in
individual plotting positions, particularly at the
extremes where that uncertainty is largest. The

0.05 0.01
0.9180 0.8804
0.9383 09110
0.9503 0.9290
0.9639 0.9490
0.9715 0.9597
0.9764 0.9664
0.9799 0.9710
0.9835 0.9757
0.9870 0.9812
0.99525 0.99354
0.99824 0.99755

probability plot correlation test is a popular and
powerful goodness-of-fit statistic. Goodness-of-
fit tests based upon sample estimators of the
L-skewness 73 for the normal and Gumbel dis-
tribution provide simple and useful tests that are
not based on a probability plot.

6.3.3 Normal and Lognormal
Distributions

The normal distribution and its logarithmic
transformation, the lognormal distribution, are
arguably the most widely used distributions in
science and engineering. The density function of
a normal random variable is

e e I

for —oco<x< + 0

Jx(x) =
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Table 6.7 Lower critical values of the probability plot correlation test statistic for the Gumbel distribution using

pi= (i — 0.44)/(n + 0.12) (Vogel 1987)

significance level

n 0.10
10 0.9260
20 0.9517
30 0.9622
40 0.9689
50 0.9729
60 0.9760
70 0.9787
80 0.9804
100 0.9831
300 0.9925
1,000 0.99708

where x and ¢” are equivalent to uy and 6)2(, the
mean and variance of X. Interestingly, the maxi-
mum likelihood estimators of z and o” are almost
identical to the moment estimates X and s%.

The normal distribution is symmetric about its
mean uy and admits values from —00 to +00.
Thus it is not always satisfactory for modeling
physical phenomena such as streamflows or
pollutant concentrations, which are necessarily
nonnegative and have skewed distributions.
A frequently used model for skewed distributions
is the lognormal distribution. A random variable
X has a lognormal distribution if the natural
logarithm of X, In(X), has a normal distribution.
If X is lognormally distributed, then by definition
In(X) is normally distributed, so that the density
function of X is

0.05 0.01
0.9084 0.8630
0.9390 0.9060
0.9526 0.9191
0.9594 0.9286
0.9646 0.9389
0.9685 0.9467
0.9720 0.9506
0.9747 0.9525
0.9779 0.9596
0.9902 0.9819
0.99622 0.99334
frlo) = enp{ = sy lhnto) = P

———ew{ s/l
(6.78)

forx > Oand u = In(n). Here  is the median of the
X-distribution. The coefficient of skewness for the
three-parameter lognormal distribution is given by

y=3v+0> where v = [exp(az) -1
(6.79)
A lognormal random variable takes on values

in the range [0, +00]. The parameter x deter-
mines the scale of the X-distribution whereas o°
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Fig. 6.3 Lognormal
probability density
functions with various
standard deviations o

o)

20 |
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determines the shape of the distribution. The
mean and variance of the lognormal distribution
are given in Eq. 6.65. Figure 6.3 illustrates
the various shapes the lognormal probability
density function can assume. It is highly skewed
with a thick right-hand tail for o> 1, and
approaches a symmetric normal distribution as
o — 0. The density function always has a value
of zero at x = 0. The coefficient of variation
and skew are

CVy = [exp(c?) — 1]"/?

(6.80)
7x = 3CVx +CVj,

The maximum likelihood estimates of x and
o are given in Eq. 6.63 and the moment esti-
mates in Eq. 6.66. For reasonable-size samples,
the maximum likelihood estimates are generally
performed as well or better than the moment
estimates (Stedinger 1980).

The data in Table 6.2 were used to calculate
the parameters of the lognormal distribution that
would describe the flood flows and the results are
reported after Eq. 6.66. The two-parameter
maximum likelihood and method of moments
estimators identify parameter estimates for which
the distribution skewness coefficients are 2.06

and 1.72, which is substantially greater than the
sample skew of 0.712.

A useful generalization of the two-parameter
lognormal distribution is the shifted lognormal or
three-parameter lognormal distribution obtained
when In(X — 7) is described by a normal distri-
bution, where X = 7. Theoretically, z should be
positive if for physical reasons X must be posi-
tive; practically, negative values of 7 can be
allowed when the resulting probability of nega-
tive values of X is sufficiently small.

Unfortunately, maximum likelihood estimates
of the parameters 4, o>, and 7 are poorly behaved
because of irregularities in the likelihood func-
tion (Giesbrecht and Kempthorne 1976). The
method of moments does fairly well when the
skew of the fitted distribution is reasonably
small. A method that does almost as well as the
moment method for low-skew distributions, and
much better for highly skewed distributions,
estimates 7 by

X(1)X() — $.50
x(1) +X(n) — 2%0.50

(6.81)

%:

provided that x(;) + xm) — 2% 950 > 0, where x(y,
and x, are the smallest and largest observations
and Xoso is the sample median (Stedinger 1980;
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Hoshi et al. 1984). If xy) + Xy — 2X0.50 < O, the
sample tends to be negatively skewed and a
three-parameter lognormal distribution with a
lower bound cannot be fit with this method.
Good estimates of u and ¢ to go with 7 in
Eq. 6.81 are (Stedinger 1980)

For the data in Table 6.2, Eq. 6.82 yields the
hybrid moment-of-moments estimates for the
three-parameter lognormal distribution

ft = 7.606
6% = 0.1339 = (0.3659)*
1= —600.1

This distribution has a coefficient of skewness
of 1.19, which is more consistent with the sample
skewness estimator than was the value obtained
when a two-parameter lognormal distribution
was fit to the data. Alternatively, one can esti-
mate  and ¢° by the sample mean and variance
of In(X — 7) that yields the hybrid maximum
likelihood estimates

it = 7.605
6% = 0.1407 = (0.3751)*
t = —600.1

The two sets of estimates are surprisingly
close in this instance. In this second case, the
fitted distribution has a coefficient of skewness of
1.22.

Natural logarithms have been used here. One
could have just as well used base 10 common
logarithms to estimate the parameters; however,
in that case the relationships between the log
space parameters and the real-space moments
change slightly (Stedinger et al. 1993,
Eq. 18.2.8).
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6.3.4 Gamma Distributions

The gamma distribution has long been used to
model many natural phenomena, including daily,
monthly, and annual streamflows as well as flood
flows (Bobee and Ashkar 1991). For a gamma
random variable X,

ful) = Fﬂ)(ﬁx)“eﬁ" Bx>0
by = o
_x
B _ﬁi (6.83)
X ﬁZ
Iy = \/% —2CVy

The gamma function, /{(a), for integer a is
(o — 1)!. The parameter o > 0 determines the
shape of the distribution; S is the scale parameter.
Figure 6.4 illustrates the different shapes that the
probability density function for a gamma variable
can assume. As a — 00, the gamma distribution
approaches the symmetric normal distribution,
whereas for 0 < a < 1, the distribution has a
highly asymmetric J-shaped probability density
function whose value goes to infinity as x ap-
proaches zero.

The gamma distribution arises naturally in
many problems in statistics and hydrology. It
also has a very reasonable shape for such non-
negative random variables as rainfall and
streamflow. Unfortunately, its cumulative distri-
bution function is not available in closed form,
except for integer a, though it is available in
many software packages including Microsoft
Excel. The gamma family includes a very special
case: the exponential distribution is obtained
when a = 1.

The gamma distribution has several general-
izations (Bobee and Ashkar 1991). If a constant ¢
is subtracted from X so that (X — 7) has a gamma
distribution, the distribution of X is a
three-parameter gamma distribution. This is also
called a Pearson type 3 distribution, because the
resulting distribution belongs to the third type of
distributions suggested by the statistician
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Fig. 6.4 The gamma
distribution functions for
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Karl Pearson. Another variation is the procedures. Using the first three sample
log-Pearson type 3 distribution obtained by fit- moments, one would obtain for the three-

ting the logarithms of X with a Pearson type 3
distribution. The log-Pearson distribution is dis-
cussed further in the next section.

The method of moments may be used to
estimate the parameters of the gamma distribu-
tion. For the three-parameter gamma distribution

t=%-2 (S—X>
’x
. 4
o =— (6.84)
(Vx)
- 2
B =
SX'))X

where X,s5%,and jy are estimates of the mean,
variance, and coefficient of skewness of the dis-
tribution of X (Bobee and Robitaille 1977).

For the two-parameter gamma distribution,
(¥)?

2
S

>

(6.85)

=

X
2

Sx

Again the flood record in Table 6.2 can be
used to illustrate the different estimation

parameter gamma distribution the parameter
estimates

f = 0.003452 = 1/289.7

Using only the sample mean and variance
yields the method of moment estimators of the
parameters of the two-parameter gamma distri-
bution (z = 0)

8 =3.627
B =0.002341 = 1/427.2

The fitted two-parameter gamma distribution
has a coefficient of skewness y of 1.05 whereas
the fitted three-parameter gamma reproduces the
sample skew of 0.712. As occurred with the
three-parameter lognormal distribution, the esti-
mated lower bound for the three-parameter
gamma distribution is negative (T = —735.6)
resulting in a three-parameter model that has a
smaller skew coefficient than was obtained with
the corresponding two-parameter model. The

reciprocal of ﬁ is often reported. While B has
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inverse x-units, l/ﬁ is a natural scale parameter
that has the same units as x and thus can be easier
to interpret.

Studies by Thom (1958) and Matalas and
Wallis (1973) have shown that maximum likeli-
hood parameter estimates are superior to the
moment estimates. For the two-parameter gamma
distribution, Greenwood and Durand (1960) give
approximate formulas for the maximum likeli-
hood estimates (also Haan 1977). However, the
maximum likelihood estimators are often not
used in practice because they are very sensitive
to the smallest observations that sometimes suffer
from measurement error and other distortions.

When plotting the observed and fitted quan-
tiles of a gamma distribution, an approximation
to the inverse of the distribution function is often

useful. For [y <3, the Wilson-Hilferty
transformation
2\ 3
VAN Y 2
= - — ) - 6.86

gives the quantiles x; of the gamma distribution
in terms of xy, the quantiles of the standard
normal distribution. Here u, o, and y are the
mean, standard deviation, and coefficient of
skewness of xg. Kirby (1972) and Chowdhury
and Stedinger (1991) discuss this and other more
complicated but more accurate approximations.
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Fortunately the availability of excellent approx-
imations of the gamma cumulative distribution
function and its inverse in Microsoft Excel and
other packages has reduced the need for such
simple approximations.

6.3.5 Log-Pearson Type 3
Distribution

The log-Pearson type 3 distribution (LP3)
describes a random variable whose logarithms
have a Pearson type 3 distribution. This distri-
bution has found wide use in modeling flood
frequencies and has been recommended for that
purpose (IACWD 1982). Bobee (1975), Bobee
and Ashkar (1991) and Griffis and Stedinger
(2007a) discuss the unusual shapes that this
hybrid distribution may take allowing negative
values of f. The LP3 distribution has a proba-
bility density function given by.

fil@) = |BI{lnCx) — gy 657)
exp{—Blin(x) — &} /{xI"(2)}

with a > 0, and S either positive or negative. For
p <0, values are restricted to the range
0 < x < exp(¢). For > 0, values have a lower
bound so that exp(¢) < X. Figure 6.5 illustrates
the probability density function for the LP3

Fig. 6.5 Log-Pearson type
3 probability density
functions for different
values of coefficient of
skewness y

/3.5 - f()

30
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distribution as a function of the skew y of the P3
distribution describing In(X), with oy,x = 0.3.
The LP3 density function for [y| < 2 can assume
a wide range of shapes with both positive and
negative skews. For [y| = 2, the log-space P3
distribution is equivalent to an exponential dis-
tribution function which decays exponentially as
x moves away from the lower bound (f > 0) or
upper bound (f < 0): as a result the LP3 distri-
bution has a similar shape. The space with
—1 <y may be more realistic for describing
variables whose probability density function
becomes thinner as x takes on large values. For
y = 0, the 2-parameter lognormal distribution is
obtained as a special case.
The LP3 distribution has mean and variance

ﬂxzei(%)% a )
@;g«:{(%) _(ﬂ_ﬁJ } (6.88)

for f > 2,or f<0.

For 0 < f§ < 2, the variance is infinite.

These expressions are seldom used, but they
do reveal the character of the distribution.
Figures 6.6 and 6.7 provide plots of the
real-space coefficient of skewness and coefficient
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of variation of a log-Pearson type 3 variate X as a
function of the standard deviation oy and coeffi-
cient of skew yy of the log-transformation ¥ = In
(X). Thus the standard deviation oy and skew yy
of Y are in log space. For yy = 0, the log-Pearson
type 3 distribution reduces to the two-parameter
lognormal distribution discussed above, because
in this case Y has a normal distribution. For the
lognormal distribution, the standard deviation oy
serves as the sole shape parameter, and the
coefficient of variation of X for small oy is just
oy. Figure 6.7 shows that the situation is more
complicated for the LP3 distribution. However,
for small oy, the coefficient of variation of X is
approximately oy.

Again, the flood flow data in Table 6.2 can be
used to illustrate parameter estimation. Using
natural logarithms, one can estimate the
log-space moments with the standard estimators
in Eqgs. 6.39a that yield

L= 17.202
& =0.5625
5 = —0.337

For the LP3 distribution, analysis generally
focuses on the distribution of the logarithms
Y = In(X) of the flows, which would have a

Fig. 6.6 Real-space
coefficient of skewness yx
for LP3 distributed X as a 12

real-space coefficient

deviation cy,

\

function of log-space of skewness vy,
standard deviation oy and 10
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Fig. 6.7 Real-space
coefficient of variation CVy
for LP3 distributed X as a
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Pearson type 3 distribution with moments uy, oy
and yy TACWD 1982; Bobée and Ashkar 1991).
As a result, flood quantiles are calculated as

xp = exp{uy + ovKy[yy]} (6.89)
where K,[yy] is a frequency factor corresponding
to cumulative probability for skewness coeffi-
cient py. (K,[yy] corresponds to the quantiles of a
three-parameter gamma distribution with zero
mean, unit variance, and skewness coefficient yy.)

Since 1967, the recommended procedure for
flood frequency analysis by federal agencies in
the United States uses this distribution. Current
guidelines in Bulletin 17B (IACWD 1982) sug-
gest that the skew yy be estimated by a weighted
average of the at-site sample skewness coefficient
and a regional estimate of the skewness coeffi-
cient. Griffis and Stedinger (2007b) compare a
wide range of methods that have been recom-
mended for fitting the LP3 distribution.

6.3.6 Gumbel and GEV Distributions

The annual maximum flood is the largest flood
flow during a year. One might expect that the
distribution of annual maximum flood flows

would belong to the set of extreme value distri-
butions (Gumbel 1958; Kottegoda and Rosso
1997). These are the distributions obtained in the
limit, as the sample size n becomes large, by
taking the largest of n independent random
variables. The Extreme Value (EV) type I dis-
tribution or Gumbel distribution has often been
used to describe flood flows. It has the cumula-
tive distribution function

Fx(x) = exp{—exp[—(x — &)/a]} (6.90)
with mean and variance of
Uy = E+0.57720

5 ) (6.91)

oy = ma? /6 = 1.6450°

Its skewness coefficient has the fixed value
equal to yx = 1.1396.

The generalized extreme value (GEV) distri-
bution is a general mathematical expression that
incorporates the type I, II, and III extreme value
(EV) distributions for maxima (Gumbel 1958;
Hosking et al. 1985). In recent years, it has been
used as a general model of extreme events
including flood flows, particularly in the context
of regionalization procedures (NERC 1975;
Stedinger and Lu 1995; Hosking and Wallis
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1997). The GEV distribution has cumulative
distribution function

Fx(x) = exp{—[1 — x(x — &) /a]'/*} forx #0
(6.92)

For x > 0, floods must be less than the upper
bound for k < 0, & < x < 00, whereas for ¥ > 0,
¢ < x < ¢+ o/k (Hosking and Wallis 1987). The
mean, variance, and skewness coefficient are (for
x> —1/3)

px = <+ (/) [1 = T(1+x)],
0% = (/) {1 (1+2) = [[(1+ 1)}
vx = Sign(x){—I'(1+3x) + 3T (1 +x)(1+2x)
—2r(1+ 0P YA +2) = [F(1+ 1))
(6.93)

where (1 + «) is the classical gamma function.
The Gumbel distribution is obtained when x = 0.

6 An Introduction to Probability, Statistics, and Uncertainty

K = 7.8590¢ 4 2.9554¢2
o= wly/[[(1+x)(1—27")]
=i+ (a/w)[I(1+x)—1]

(6.94)

where

¢ =222/(Ja+33) — In(2)/In(3)
= [2/(13+3)] = 1In(2)/In(3)

As one can see, the estimator of the shape
parameter x will depend only upon the
L-skewness estimator 73. The estimator of the
scale parameter o will then depend on the esti-
mate of x and of A,. Finally, one must also use
the sample mean 4; (Eq. 6.48) to determine the
estimate of the location parameter ¢.

Using the flood data in Table 6.2 and the
sample L-moments computed in Sect. 6.2, one
obtains first

For || < 0.3, the general shape of the GEV dis- ¢ = —0.000896
tribution is similar to the Gumbel distribution, that vields
though the right-hand tail is thicker for ¥ < 0, and v
thinner for x > 0, as shown in Figs. 6.8 and 6.9. Kk = —0.007036
The parameters of the GEV distribution are E: 1165.20
easily computed using L-moments and the rela- % — 657.29
tionships (Hosking et al. (1985) *= ‘
Fig. 6.8 GEV density
distributions for selected
shape parameter x values S, 0.20
0.15 |
o.10 f
— K=-03
— K=-0.1
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Fig. 6.9 Right-hand tails
of GEV distributions
shown in Fig. 6.8

0.02

0.01

The small value of the fitted x parameter
means that the fitted distribution is essentially a
Gumbel distribution. Here ¢ is a location
parameter, not a lower bound, so its value
resembles a reasonable x value.

Madsen et al. (1997a) show that moment esti-
mators can provide more precise quantile esti-
mators. Yet Martins and Stedinger (2001a, b)
found that with occasional uninformative sam-
ples, the MLE estimator of k could be entirely
unrealistic resulting in absurd quantile estimators.
However the use of a realistic prior distribution on
« yielded better generalized maximum likelihood
estimators (GLME) than moment and L-moment
estimators over the range of x of interest.

The GMLE estimators are obtained my
maximizing the log-likelihood function, aug-
mented by a prior density function on x. A prior
distribution that reflects general worldwide geo-
physical experience and physical realism is in the
form of a beta distribution

n(i) = I (p)I(g)(0.5+ )"

- (6.95)

(05—w)""' /T (p+4q)
for 05 <k<+0.5 with p=6 and ¢g=09.
Moreover, this prior assigns reasonable proba-
bilities to the values of k within that range. For
outside the range —0.4 to +0.2 the resulting GEV
distributions do not have density functions con-
sistent with flood flows and rainfall (Martins and

Stedinger 2000). Other estimators implicitly have
similar constraints. For example, L-moments
restricts x to the range x > —1, and the method
of moments estimator employs the sample stan-
dard deviation so that ¥ > —0.5. Use of the sam-
ple skew introduces the constraint that « > —0.3.

Then given a set of independent observations
{x1, ..., x,,} drawn for a GEV distribution, the
generalized likelihood function is

o Xa)}
= —nln(a) + Z} [G - 1) In(y;) — (y,-)l/"}

+ In[n(x)]

]H{L(é, oy K|X17

with

yi=[1 = (/o) (xi = )] (6.96)

For feasible values of the parameters y; is
greater than O (Hosking et al. 1985). Numerical
optimization of the generalized likelihood func-
tion is often aided by the additional constraint
that min{yy, ..., ¥, } = ¢ for some small ¢ > 0 so
as to prohibit the search generating infeasible
values of the parameters for which the likelihood
function is undefined. The constraint should not
be binding at the final solution.

The data in Table 6.2 again provide a conve-
nient data set for illustrating parameter estimators.
The L-moment estimators were used to generate
an initial solution. Numerical optimization of the
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likelihood function Eq. 6.96 yielded the maxi-

mum likelihood estimators of the GEV
parameters
ik = —0.0359
E=1165.4
o =620.2
Similarly, use of the geophysical prior

(Eq. 6.95) yielded the generalized maximum
likelihood estimators

k= —0.0823
&E=1150.8
5=0611.4

Here the record length of 40 years is too short
to reliably define the shape parameter x so that
result of using the prior is to increase x slightly
toward the mean of the prior. The other two
parameters adjust accordingly.

6.3.7 L-Moment Diagrams

This chapter has presented several families of
distributions. The L-moment diagram in
Fig. 6.10 illustrates the relationships between the
L-kurtosis (z3) and L-skewness (z,) for a number
of the families of distributions often used in
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hydrology. It shows that distributions with the
same coefficient of skewness still differ in the
thickness of their tails, described by their kurto-
sis. Tail shapes are important if an analysis is
sensitive to the likelihood of extreme events.

The normal and Gumbel distributions have a
fixed shape and thus are presented by single
points that fall on the Pearson type 3 (P3) curve
for y =0, and the generalized extreme value
(GEV) curve for x =0, respectively. The
L-kurtosis/L-skewness relationships for the
two-parameter and three-parameter gamma or P3
distributions are identical, as they are for the
two-parameter and three-parameter lognormal
distributions. This is because the addition of a
location parameter does not change the range of
fundamental shapes that can be generated.
However, for the same skewness coefficient, the
lognormal distribution has a larger kurtosis than
the gamma or P3 distribution and thus assigns
larger probabilities to the largest events.

As the skewness of the lognormal and gamma
distributions approaches zero, both distributions
become normal and their kurtosis/skewness
relationships merge. For the same L-skewness,
the L-kurtosis of the GEV distribution is gener-
ally larger than that of the lognormal distribu-
tion. For positive x yielding almost symmetric or
even negatively skewed GEV distributions, the
GEV has a smaller kurtosis than the three-
parameter lognormal distribution. The latter can

Fig. 6.10 Relationships
between L-skewness and
L-kurtosis for various 2 08 r
distributions 3 ’ ® Normal < Gumbel
= — P3 — GEV
=7
] LN Pareto
= 06
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be negatively skewed when 7 is used as an upper
bound.

Figurer 6.10 also includes the three-parameter
generalized Pareto distribution, whose cdf is

Fy(x) =1—[1—(x—&)/d""  (6.97)

(Hosking and Wallis 1997). For « = 0 it cor-
responds to the exponential distribution (gamma
with a = 1). This point is where the Pareto and
P3 distribution L-kurtosis/L-skewness lines
cross. The Pareto distribution becomes increas-
ing more skewed for x < 0, which is the range of
interest in hydrology. The generalized Pareto
distribution with x < 0 is often used to describe
peaks-over-a-threshold and other variables
whose density function has its maximum at their
lower bound. In that range for a given
L-skewness, the Pareto distribution always has a
larger kurtosis than the gamma distribution. In
these cases the o parameter for the gamma dis-
tribution would need to be in the range
0 < a < 1, so that both distributions would be
J-shaped.

As shown in Fig. 6.10, the GEV distribution
has a thicker right-hand tail than either the
gamma/Pearson type 3 distribution or the log-
normal distribution.

6.4 Analysis of Censored Data

There are many instances in water resources
planning where one encounters censored data.
A data set is censored if the values of observa-
tions that are outside a specified range of values
are not specifically reported (David 1981). For
example, in water quality investigations many
constituents have concentrations that are reported
as <7, where T is a reliable detection threshold
(MacBerthouex and Brown 2002). Thus the
concentration of the water quality variable of
interest was too small to be reliably measured.
Likewise, low-flow observations and rainfall
depths can be rounded to or reported as zero.
Several approaches are available for analysis
of censored data sets including probability
plots and probability plot regression, conditional
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probability models, and maximum likelihood
estimators (Haas and Scheff 1990; Helsel 1990;
Kroll and Stedinger 1996; MacBerthouex and
Brown 2002).

Historical and physical paleoflood data pro-
vide another example of censored data. Before the
beginning of a continuous measurement program
on a stream or river, the stages of unusually large
floods can be estimated based on the memories of
humans who have experienced these events
and/or physical markings in the watershed
(Stedinger and Baker 1987). Before continuous
measurements were taken that provided this
information, the annual maximum floods that
were not unusual were not recorded. These
missing data are censored data. They cover peri-
ods between occasionally large floods that have
been recorded or that have left some evidence of
their occurrence (Stedinger and Cohn 1986).

The discussion below addresses probability
plot methods for use with censored data. Proba-
bility plot methods have a long history of use
with censored data because they are relatively
simple to use and to understand. Moreover,
recent research has shown that they are relatively
efficient when the majority of values are
observed, and unobserved values are known only
to be below (or above) some detection limit or
perception threshold that serves as a lower (or
upper) bound. In such cases, probability plot
regression estimators of moments and quantiles
are as accurate as maximum likelihood estima-
tors. They are almost as good as estimators
computed with complete samples (Helsel and
Cohn 1988; Kroll and Stedinger 1996).

Perhaps the simplest method for dealing with
censored data is adoption of a conditional prob-
ability model. Such models implicitly assume
that the data are drawn from one of two classes of
observations: those below a single threshold, and
those above the threshold. This model is appro-
priate for simple cases where censoring occurs
because small observations are recorded as
“zero,” as often happens with low-flow, low
pollutant concentration, and some flood records.
The conditional probability model introduces an
extra parameter P, to describe the probability
that an observation is “zero.” If r of a total of
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n observations were observed because they
exceeded the threshold, then P, is estimated as
(n — rY/n. A continuous distribution Gy(x) is
derived for the strictly positive “nonzero” values
of X. Then the parameters of the G distribution
can be estimated using any procedure appropriate
for complete uncensored samples. The uncondi-

tional cumulative distribution function
(cdf) Fx(x) for any value x > 0, is then
Fx(x) = Po+ (1 — Py)G(x) (6.98)

This model completely decouples the value of
Py from the parameters that describe the
G distribution.

Section 6.3.2 discusses probability plots and
plotting positions useful for graphical displaying
of data to allow a visual examination of the
empirical frequency curve. Suppose that among
n samples a detection limit is exceeded by the
observations r times. The natural estimator of the
exceedance probability P, of the perception
threshold is again (n — r)/n. If the r values that
exceeded the threshold are indexed by i = 1, ...,

r, wherein x, is the largest, then reasonable
plotting positions within the interval [Py 1] arerno

pi=Po+ (1 —Po)[(i —a)/(r+1—2a)]
(6.99)

where a defines the plotting position that is used.
Helsel and Cohn (1988) show that reasonable
choices for a generally make little difference.
Letting a = 0 is reasonable (Hirsch and Stedinger
1987). Both papers discuss development of
plotting positions when there are different
thresholds, as occurs when the analytical preci-
sion of instrumentation changes over time. If
there are many exceedances of the threshold so
that  >> (1 — 2a), p; is indistinguishable from

pi=li+(n+r)—al/(n+1—2a). (6.100)
where again, i =1, ..., r. These values corre-
spond to the plotting positions that would be
assigned to the largest r observations in a com-
plete sample of n values.
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The idea behind the probability plot regres-
sion estimators is to use the probability plot for
the observed data to define the parameters of the
whole distribution. And if a sample mean, sam-
ple variance, or quantiles are needed, then the
distribution defined by the probability plot is
used to fill in the missing (censored) observations
so that standard estimators of the mean, of the
standard deviation, and of the quantiles can be
employed. Such fill-in procedures are efficient
and relatively robust for fitting a distribution and
estimating various statistics with censored water
quality data when a modest number of the
smallest observations are censored (Helsel 1990;
Kroll and Stedinger 1996).

Unlike the conditional probability approach,
here the below threshold probability P is linked
with the selected probability distribution for the
above-threshold observations. The observations
below the threshold are censored but are in all
other respects envisioned as coming from the
same distribution that is used to describe the
observed above-threshold values.

When water quality data are well described by
a lognormal distribution, available values In
[Xnh] £ -+ £ 1In[X)] can be regressed upon
Fl'lpl=u+0oF '[p] for i=1, .., r where
the r largest observation in a sample of size n are
available. If regression yields constant m and
slope s, corresponding to population moments u
and o, a good estimator of the pth quantile is

X, = exp[m+ sz, (6.101)

where z, is the pth quantile of the standard nor-
mal distribution. To estimate sample means and
other statistics one can fill in the missing obser-
vations with

x(j) =exp{y(j)} forj=1,...,(n—r)
(6.102)

where

Y(j) = m+sF~{Po[(j —a)/(n —r+1 - 2a)]}
(6.103)
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Once a complete sample is constructed, stan-
dard estimators of the sample mean and variance
can be calculated, as can medians and ranges. By
filling in the missing small observations, and
then using complete-sample estimators of statis-
tics of interest, the procedure is relatively
insensitive to the assumption that the observa-
tions actually have a lognormal distribution.

Maximum likelihood estimators are quite
flexible, and are more efficient than plotting
position methods when the values of the obser-
vations are not recorded because they are below
the perception threshold (Kroll and Stedinger
1996). Maximum likelihood methods allow the
observations to be represented by exact values,
ranges, and various thresholds that either were or
were not exceeded at various times. This can be
particularly important with historical flood data
sets because the magnitudes of many historical
floods are not recorded precisely, and it may be
known that a threshold was never crossed or was
crossed at most once or twice in a long period
(Stedinger and Cohn 1986; Stedinger 2000;
O’Connell et al. 2002). Unfortunately, maximum
likelihood estimators for the LP3 distribution
have proven to be problematic. However,
expected moment estimators seem to do as well
as MLEs with the LP3 distribution (Cohn et al.
1997, 2001).

While often a computational challenge, max-
imum likelihood estimators for complete sam-
ples, and samples with some observations
censored, pose no conceptual challenge. One
need to only write the maximum likelihood
function for the data and proceed to seek the
parameter values that maximizes that function.
Thus if F(x|@) and f(x|@) are the cumulative dis-
tribution and probability density functions that
should describe the data, and @ are its parameters,
then for the case described above wherein
Xy, ..., X, are r of n observations that exceeded a
threshold 7, the likelihood function would be
(Stedinger and Cohn 1986)

x,) = F(T]0)" " (x1]0)f (x210) . . . £ (x,]0)
(6.104)

L(O|r,n,xy, ...,
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Here (n — r) observations were below the
threshold 7, and the probability an observation is
below T is F(7]#) which then appears in
Eq. 6.104 to represent that observation. In addi-
tion the specific values of the r observations
X1, ..., X, are available. The probability an
observation is in a small interval of width &
around x; is 6" f{x;]@). Thus strictly speaking the
likelihood function also includes a term &". Here
what is known of the magnitude of all of the
n observations is included in the likelihood
function in the appropriate way. If all that were
known of some observation was that it exceeded
a threshold M, then that value should be repre-
sented by a term [1 — F(M|6)] in the likelihood
function. Similarly, if all that was known was
that the value was between L and M, then a term
[F(M|@) — F(L|@)] should be included in the
likelihood function. Different thresholds can be
used to describe different observations, corre-
sponding to changes in the quality of measure-
ment procedures. Numerical methods can be
used to identify the parameter vector that maxi-
mizes the likelihood function for the data
available.

6.5 Regionalization
and Index-Flood Method

Research has demonstrated the potential advan-
tages of “index flood” procedures (Lettenmaier
et al. 1987; Stedinger and Lu 1995; Hosking and
Wallis 1997; Madsen and Rosbjerg 1997a). The
idea behind the index-flood approach is to use
the data from many hydrologically “similar”
basins to estimate a dimensionless flood distri-
bution (Wallis 1980). Thus this method “substi-
tutes space for time” using regional information
to compensate for having relatively short records
at each site. The concept underlying the
index-flood method is that the distributions of
floods at different sites in a “region” are the same
except for a scale or index-flood parameter that
reflects the size, rainfall, and runoff characteris-
tics of each watershed. Research is revealing



248

when this assumption may be reasonable. Often a
more sophisticated multi-scaling model is
appropriate (Gupta and Dawdy 1995a; Robinson
and Sivapalan 1997).

Generally the mean is employed as the index
flood. The problem of estimating the pth quantile
X, is then reduced to estimating the mean for a
site uy, and the ratio x,/u, of the pth quantile to
the mean. The mean can often be estimated
adequately with the record available at a site,
even if that record is short. The indicated ratio is
estimated using regional information. The British
Flood Studies Report (NERC 1975) calls these
normalized flood distributions growth curves.

Key to the success of the index-flood
approach is identification of sets of basins that
have similar coefficients of variation and skew.
Basins can be grouped geographically, as well as
by physiographic characteristics including drai-
nage area and elevation. Regions need not be
geographically contiguous. Each site can poten-
tially be assigned its own unique region con-
sisting of sites with which it is particularly
similar (Zrinji and Burn 1994), or regional
regression equations can be derived to compute
normalized regional quantiles as a function of a
site’s physiographic characteristics and other
statistics (Fill and Stedinger 1998).

Clearly the next step for regionalization pro-
cedures, such as the index-flood method, is to
move away from estimates of regional parame-
ters that do not depend upon basin size and other
physiographic parameters. Gupta et al. (1994)
argue that the basic premise of the index-flood
method, that the coefficient of variation of floods
is relatively constant, is inconsistent with the
known relationships between the coefficient of
variation CV and drainage area (see also
Robinson and Sivapalan 1997). Recently, Fill
and Stedinger (1998) built such a relationship
into an index-flood procedure using a regression
model to explain variations in the normalized
quantiles. Tasker and Stedinger (1986) illustrated
how one might relate log-space skew to physio-
graphic basin characteristics (see also Gupta and
Dawdy 1995b). Madsen and Rosbjerg (1997b)
did the same for a regional model of x for the
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GEV distribution. In both studies, only a binary
variable representing “region” was found useful
in explaining variations in these two shape
parameters.

Once a regional model of alternative shape
parameters is derived, there may be some
advantage to combining such regional estimators
with at-site estimators employing an empirical
Bayesian framework or some other weighting
schemes. For example, Bulletin 17B recom-
mends weighting at-site and regional skewness
estimators, but almost certainly places too much
weight on the at-site values (Tasker and
Stedinger 1986). Examples of empirical Baye-
sian procedures are provided by Kuczera (1982),
Madsen and Rosbjerg (1997b) and Fill and
Stedinger (1998). Madsen and Rosbjerg’s
(1997b) computation of a k-model with a New
Zealand data set demonstrates how important it
can be to do the regional analysis carefully,
taking into account the cross-correlation among
concurrent flood records.

When one has relatively few data at a site, the
index-flood method is an effective strategy for
deriving flood frequency estimates. However, as
the length of the available record increases it
becomes increasingly advantageous to also use
the at-site data to estimate the coefficient of
variation as well. Stedinger and Lu (1995) found
that the L-moment/GEV index-flood method did
quite well for “humid regions” (CV = 0.5) when
n < 25, and for semiarid regions (CV = 1.0) for
n < 60, if reasonable care is taken in selecting
the stations to be included in a regional analysis.
However, with longer records it became advan-
tageous to use the at-site mean and L-CV with a
regional estimator of the shape parameter for a
GEV distribution. In many cases this would
be roughly equivalent to fitting a Gumbel dis-
tribution corresponding to a shape parameter
x = 0. Gabriele and Arnell (1991) develop the
idea of having regions of different size for dif-
ferent parameters. For realistic hydrologic
regions, these and other studies illustrate the
value of regionalizing estimators of the shape,
and often the coefficient of variation of a
distribution.
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6.6 Partial Duration Series

Two general approaches are available for mod-
eling flood and precipitation series (Langbein
1949). An annual maximum series considers
only the largest event in each year. A partial
duration series (PDS) or peaks-over-threshold
(POT) approach includes all “independent” peaks
above a truncation or threshold level. An objec-
tion to using annual maximum series is that it
employs only the largest event in each year,
regardless of whether the second largest event in
a year exceeds the largest events of other years.
Moreover, the largest annual flood flow in a dry
year in some arid or semiarid regions may be
zero, or so small that calling them floods is
misleading. When considering rainfall series or
pollutant discharge events, one may be interested
in modeling all events that occur within a year
that exceed some threshold of interest.

Use of a partial duration series (PDS) frame-
work avoids such problems by considering all
independent peaks that exceed a specified thresh-
old. And, one can estimate annual exceedance
probabilities from the analysis of PDS. Arguments
in favor of PDS are that relatively long and reliable
PDS records are often available, and if the arrival
rate for peaks over the threshold is large enough
(1.65 events/year for the Poisson arrival with
exponential-exceedance model), PDS analyses
should yield more accurate estimates of extreme
quantiles than the corresponding annual maximum
frequency analyses (NERC 1975; Rosbjerg 1985).
However, when fitting a three-parameter distri-
bution, there seems to be little advantage from
using a PDS approach over an annual maximum
approach, even when the partial duration series
includes many more peaks than the maximum
series because both contain the same largest events
(Martins and Stedinger 2001a).

A drawback of PDS analyses is that one must
have criteria to identify only independent peaks
(and not multiple peaks corresponding to the
same event). Thus PDS analysis can be more
complicated than analyses using annual maxima.
Partial duration models, perhaps with parameters
that vary by season, are often used to estimate
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expected damages from hydrologic events when
more than one damage-causing event can occur
in a season or within a year (North 1980).

A model of a PDS series has at least two
components: first, one must model the arrival rate
of events larger than the threshold level; second,
one must model the magnitudes of those events.
For example, a Poisson distribution has often
been used to model the arrival of events, and an
exponential distribution to describe the magni-
tudes of peaks that exceed the threshold.

There are several general relationships
between the probability distribution for annual
maximum and the frequency of events in a partial
duration series. For a PDS model, let 1 be the
average arrival rate of flood peaks greater than
the threshold x and let G(x) be the probability
that flood peaks, when they occur, are less than
X > X, and thus those peaks fall in the range [xo,
x]. The annual exceedance probability for a
flood, denoted 1/T,, corresponding to an annual
return period T,, is related to the corresponding
exceedance probability g, = [1 — G(x)] for level
x in the partial duration series by

1/T, =1 —exp{—Age} =1 —exp{—1/Tp}
(6.105)

where T, = 1/(Aq.) is the average return period
for level x in the PDS.

Many different choices for G(x) may be rea-
sonable. In particular, the Generalized Pareto
distribution (GPD) is a simple distribution useful
for describing floods that exceed a specified
lower bound. The cumulative distribution func-
tion for the generalized three-parameter Pareto
distribution is

Fx(x) =1 —[1 = x(x—&)/a'/*  (6.106)
with mean and variance
px = E+a/(1+K)K (6.107)

o2 = o2 /[(14 K)*(1 +2x)]

where for k < 0, £ < x < 00, whereas for x > 0,
E<x< ¢+ ok (Hosking and Wallis 1987).
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A special case of the GPD is the two-parameter
exponential distribution obtain with x = 0.
Method of moment estimators work relatively
well (Rosbjerg et al. 1992).

Use of a generalized Pareto distribution for G
(x) with a Poisson arrival model yields a GEV
distribution for the annual maximum series
greater than xo (Smith 1984; Stedinger et al.
1993; Madsen et al. 1997a). The Poisson-Pareto
and Poisson-GPD models are a very reasonable
description of flood risk (Rosbjerg et al. 1992).
They have the advantage that they focus on the
distribution of the larger flood events, and
regional estimates of the GEV distribution’s
shape parameter x from annual maximum and
PDS analyses can be used interchangeably.
Martins and Stedinger (2001a, b) compare PDS
estimation procedures a well as demonstrating
that use of the three-parameter Poisson-GPD
model instead of a three-parameter GEV distri-
bution generally results in flood quantile esti-
mators with the same precision.

Madsen and Rosbjerg (1997a) use a Poisson-
GPD model as the basis of a PDS index-flood
procedure. Madsen et al. (1997b) show that the
estimators are fairly efficient. They pooled
information from many sites to estimate the
single shape parameter x and the arrival rate
where the threshold was a specified percentile of
the daily flow duration curve at each site. Then
at-site information was used to estimate the mean
above-threshold flood. Alternatively one could
use the at-site data to estimate the arrival rate as
well.

6.7 Stochastic Processes and Time
Series

Many important random variables in water
resources are functions whose values change
with time. Historical records of rainfall or
streamflow at a particular site are a sequence of
observations called a time series. In a time series,
the observations are ordered by time, and it is
generally the case that the observed value of the
random variable at one time influences the dis-
tribution of the random variable at later times.
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This means that the observations are not inde-
pendent. Time series are conceptualized as being
a single observation of a stochastic process,
which is a generalization of the concept of a
random variable.

This section has three parts. The first presents
the concept of stationarity and the basic statistics
generally used to describe the properties of a
stationary stochastic process. The second pre-
sents the definition of a Markov process and the
Markov chain model. Markov chains are a con-
venient model for describing many phenomena,
and are often used in synthetic flow generation
and optimization models. The third part discusses
the sampling properties of statistics used to
describe the characteristics of many time series.

6.7.1 Describing Stochastic Processes
A random variable whose value changes through
time according to probabilistic laws is called a
stochastic process. An observed time series is
considered to be one realization of a stochastic
process, just as a single observation of a random
variable is one possible value the random vari-
able may assume. In the development here, a
stochastic process is a sequence of random
variables {X(#)} ordered by a discrete time index
t=1,2,3, ...

The properties of a stochastic process must
generally be determined from a single time series
or realization. To do this several assumptions are
usually made. First, one generally assumes that
the process is stationary, at least in the short run.
This means that the probability distribution of the
process is not changing over some specified
interval of time. In addition, if a process is
strictly stationary, the joint distribution of the
random variables X(#,), ..., X(¢,) is identical to
the joint distribution of X(t; +7¢), ..., X
(t, + t) for any t; the joint distribution depends
only on the differences #; — t; between the times
of occurrence of the events. In other words, its
shape does not change over time if the distribu-
tion is stationary. In the long run, however,
because of climate and land changes, many
hydrologic distributions are not stationary, and
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just how much they will change in the future is
uncertain.

For a stationary stochastic process, one can
write the mean and variance as

px = EX(1)] (6.109)

and

oy = Var[X(1)] (6.110)

Both are independent of time ¢. The autocor-
relations, the correlation of X with itself, are
given by

_ Cov[X(1), X(1+K)]

Px (k) )
X

(6.111)

for any positive integer k (the time lag). These
are the statistics most often used to describe
stationary stochastic processes.

When one has available only a single time
series, it is necessary to estimate the values of uy,
0)2(, and px(k) from values of the random variable
that one has observed. The mean and variance
are generally estimated essentially as they were
in Eq. 6.39a.

1<
ﬂX:X:?ZX, (6.112)
=1
T
6§=%Z(Xr—7)2 (6.113)
t=

while the autocorrelations px(k) can be estimated
as (Jenkins and Watts 1968)

A ZzT;lk (Xr 4k — X)(x — X)
k)=r =
S > e

The sampling distribution of these estimators
depends on the correlation structure of the
stochastic process giving rise to the time series.
In particular, when the observations are posi-
tively correlated as is usually the case in natural
streamflows or annual benefits in a river basin

(6.114)

251

simulation, the variances of the estimated
xand 6% are larger than would be the case if the
observations were independent. It is sometimes
wise to take this inflation into account.
Section 6.7.3 discusses the sampling distribution
of these statistics.

All of this analysis depends on the assumption
of stationarity for only then do the quantities
defined in Eqgs. 6.109-6.111 have the intended
meaning. Stochastic processes are not always
stationary. Urban development, deforestation,
agricultural development, climatic variability,
and changes in regional resource management
can alter the distribution of rainfall, streamflows,
pollutant concentrations, sediment loads, and
groundwater levels over time. If a stochastic
process is not essentially stationary over the time
span in question, then statistical techniques that
rely on the stationary assumption cannot be
employed and the problem generally becomes
much more difficult.

6.7.2 Markov Processes and Markov
Chains

A common assumption in many stochastic water
resources models is that the stochastic process X
(t) is a Markov process. A first-order Markov
process has the property that the dependence of
future values of the process on past values
depends only on the current value. In symbols for
k>0,

Fx[X(t+k)|X (1), X(t — 1),X(r - 2), .. ]
= Fx[X(t+K)[X(1)]

(6.115)

For Markov processes, the current value
summarizes the state of the processes. As a
consequence, the current value of the process is
often referred to as the state. This makes physical
sense as well when one refers to the state or level
of an aquifer or reservoir.

A special kind of Markov process is one
whose state X(¢) can take on only discrete values.
Such a processes is called a Markov chain. Often
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in water resources planning, continuous
stochastic processes are approximated by Mar-
kov chains. This is done to facilitate the con-
struction of simpler stochastic models. This
section presents the basic notation and properties
of Markov chains.

Consider a stream whose annual flow is to be
represented by a discrete random variable.
Assume that the distribution of streamflows is
stationary. In the following development, the
continuous random variable representing the
annual streamflows (or some other process) is
approximated by a random variable Q, in year y,
which takes on only n discrete values ¢g; (each
value representing a continuous range or interval
of possible streamflows) with unconditional
probabilities p; where

n
ZP:‘ =1
p

It is frequently the case that the value of Q.
is not independent of Q,. A Markov chain can
model such dependence. This requires specifi-
cation of the transition probabilities p

(6.116)

ij>

pij = PriQy+1 = ¢;|Qy = il (6.117)

A transition probability is the conditional
probability that the next state is g;, given that the
current state is ¢g;. The transition probabilities
must satisfy

pj=1 foralli (6.118)
=1

J

Figure 6.11a, b show a possible set of tran-
sition probabilities in a matrix and as histograms.
Each element p;; in the matrix is the probability
of a transition from streamflow ¢g; in one year to
streamflow q; in the next. In this example, a low
flow tends to be followed by a low flow, rather
than a high flow, and vice versa.

Let P be the transition matrix whose elements
are p;;. For a Markov chain, the transition matrix
contains all the information necessary to describe
the behavior of the process. Let p! be the
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probability that the process resides in state i in
year y. Then the probability that Q,,; = g; is the
sum of the probabilities p; that Q, = g, times the
probability p; that the next state is Oy given that
O, = g;. In symbols, this relationship is written

n

P =Pyt mpe =Y Py
i=1

(6.119)

Letting p* be the row vector of state resident
probabilities (p7, ..

1

. pﬁl), this relationship may
be written
pU*h =p0ip (6.120)
To calculate the probabilities of each stream-
flow state in year y + 2, one can use p°*"
in Eq.6.120 to obtain p®*? =p®*YP or
p(y+2) - pyPZ
Continuing in this matter, it is possible to
compute the probabilities of each possible

streamflow state for years y+ 1, y+ 2,
y+3,..,y+k, ...as
pUThH = pypk (6.121)

Returning to the four-state example in
Fig. 6.11, assume that the flow in year y is in the
interval represented by g, Hence in year y the
unconditional streamflow probabilities p) are
(0, 1, 0, 0). Knowing each p) , the probabilities
p; + corresponding to each of the four stream-
flow states can be determined. From Fig. 6.11,
the probabilities p}YH are 0.2, 0.4, 0.3, and 0.1
for j =1, 2, 3, and 4, respectively. The proba-
bility vectors for nine future years are listed in
Table 6.8.

As time progresses, the probabilities generally
reach limiting values. These are the uncondi-
tional or steady-state probabilities. The quantity
p; has been defined as the unconditional proba-
bility of g;. These are the steady-state probabili-
ties which p®** approaches for large k. It is clear
from Table 6.8 that as k becomes larger,
Eq. 6.119 becomes
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Fig. 6.11 a Matrix of streamflow transition probabilities  transition probabilities showing probability of streamflow
showing probability of streamflow g; (represented by  g; (represented by index j) in year y + 1 given streamflow
index j) in year y + 1 given streamflow ¢; (represented by  g; (represented by index i) in year y

index i) in year y. b Histograms (below) of streamflow
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Table 6.8 Successive streamflow probabilities based on transition probabilities in Fig. 6.11

year 4
y 0.000
y+ 1 0.200
y+2 0.190
y+3 0.173
y + 4 0.163
y+5 0.159
y+6 0.157
y+7 0.156
y+8 0.156
y+9 0.156
n

i=1

or in vector notation, Eq. 6.122 becomes

p =pP (6.123)
where p is the row vector of unconditional
probabilities (py, ..., p,). For the example in
Table 6.8, the probability vector p equals (0.156,
0.309, 0.316, 0.219).

The steady-state probabilities for any Markov
chain can be found by solving simultaneous
Egs. 6.123 for all but one of the states j together
with the constraint

Zl’i =1
p

Annual streamflows are seldom as highly
correlated as the flows in this example. However,
monthly, weekly, and especially daily stream-
flows generally have high serial correlations.
Assuming that the unconditional steady-state
probability distributions for monthly stream-
flows are stationary, a Markov chain can be
defined for each month’s steamflow. Since there

(6.124)

P,y P,y Py
1.000 0.000 0.000
0.400 0.300 0.100
0.330 0310 0.170
0316 0.312 0.199
0.312 0314 0.211
0.310 0.315 0.216
0.309 0.316 0.218
0.309 0.316 0.219
0.309 0.316 0.219
0.309 0.316 0.219

are 12 months in a year, there would be 12
transition matrices, the elements of which could
be denoted as pfj Each defines the probability of

a streamflow p*!

(v) in month 7 + 1, given a
streamflow pi(y) in month z. The steady-state
stationary probability vectors for each month can
be found by the procedure outlined above, except
that now all 12 matrices are used to calculate all
12 steady-state probability vectors. However,
once the steady-state vector p is found for one
month, the others are easily computed using

Eq. 6.121 with ¢ replacing y.

6.7.3 Properties of Time Series
Statistics

The statistics most frequently used to describe
the distribution of a continuous-state stationary
stochastic process are the sample mean, variance,
and various autocorrelations. Statistical depen-
dence among the observations, as is frequently
the case in time series, can have a marked effect
on the distribution of these statistics. This part of
Sect. 6.7 reviews the sampling properties of
these statistics when the observations are a real-
ization of a stochastic process.



6.7 Stochastic Processes and Time Series
The sample mean

Y:

S |-

(6.125)

>
i=1

when viewed as a random variable is an unbiased
estimate of the mean of the process iy, because

EX =1 Ew) = (6126)

However, correlation among the X;’s, so that
px(k) # 0 for k > 0, affects the variance of the
estimated mean X.

Var(X) = E[(X - tr)’]

- %E{ZZ (X: — ) (X, — #x)}

t=1 s=1

0_2 n—1 k
=142 1—= ) py(k
{ ¥ Z( n>f’ ( >}
(6.127)

The variance of X, equal to ¢%/n for inde-
pendent observations, is inflated by the factor
within the brackets. For px(k) = 0, as is often the
case, this factor is a non-decreasing function of n,
so that the variance of X is inflated by a factor
whose importance does not decrease with
increasing sample size. This is an important
observation, because it means the average of a
correlated time series will be less precise than the
average of a sequence of independent random
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variables of the same length with the same
variance.
A common model of stochastic series has

px(k) = [px(1]" = p* (6.128)

This correlation structure arises from the
autoregressive Markov model discussed at length
in Sect. 6.8. For this correlation structure

Var(}_() = O;l—)z( {1 + 27p n(l _(/i)__p()lz_ p”)]}

(6.129)

Substitution of the sample estimates for ¢%
and px(1) in the equation above often yields a
more realistic estimate of the variance of X than
does the estimate s% /n if the correlation structure
px(k) = pk is reasonable; otherwise, Eq. 6.127
may be employed. Table 6.9 illustrates the affect
of correlation among the X, values on the stan-
dard error of their mean, equal to the square root
of the variance in Eq. 6.127.

The properties of the estimate of the variance
of X,

(6.130)

are also affected by correlation among the X,’s.
Here v rather than s is used to denote the variance
estimator because n is employed in the

Table 6.9 Standard error of X when o, = 0.25 and px(k) = ,0k

sample

size n p=0.0
25 0.050
50 0.035
100 0.025

correlation of consecutive observations

p=03 p=06
0.067 0.096
0.048 0.069
0.034 0.050
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denominator rather than n — 1. The expected
value of v2 becomes

n—1
] = {1125 (1- 5o
(6.131)

The bias in v% depends on terms involving
px(1) through px(n — 1). Fortunately, the bias in
v} decreases with 7 and is generally unimportant
when compared to its variance.

Correlation among the X,’s also affects the
variance of v%. Assuming that X has a normal
distribution (here the variance of v4 depends on
the fourth moment of X), the variance of v} for
large n is approximately (Kendall and Stuart
1966, Sect. 48.1).

Var(v}) = 2§ {1 +2 i p)z((k)} (6.132)
n =1

where for px(k) = p¥, Eq. 6.132 becomes

oy (14 p?
Var(vy) = 27)( <1 — p2>

(6.133)

Like the variance of X, the variance of vf( is
inflated by a factor whose importance does not
decrease with n. This is illustrated by Table 6.10
that gives the standard deviation of v} divided by
the true variance g% as a function of n and p

when the observations have a normal distribution
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and px(k) = p*. This would be the coefficient of
variation of v} were it not biased.

A fundamental problem of time series analy-
ses is the estimation or description of the rela-
tionship between the random variable at different
times. The statistics used to describe this rela-
tionship are the autocorrelations. Several esti-
mates of the autocorrelations have been
suggested; a simple and satisfactory estimate
recommended by Jenkins and Watts (1968) is

px(k) =7 = ;ZIk ()C, _X)(xﬂrk _X>

Do (v = x>2

(6.134)

Here, r; is the ratio of two sums where the
numerator contains # — k terms and the denom-
inator contains n terms. The estimate ry is biased,
but unbiased estimates frequently have larger
mean square errors (Jenkins and Watts 1968).
A comparison of the bias and variance of r; is
provided by the case when the X,’s are inde-
pendent normal variates. Then (Kendall and
Stuart 1966)

(6.135a)

and

Table 6.10 Standard deviation of (v)z( / 0')2() when observations have a normal distribution and px(k) = pk

sample

size n p=0.0
25 0.28
50 0.20

100 0.14

correlation of consecutive observations

p=03 p=0.6
0.31 0.41
0.22 0.29
0.15 0.21
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For n = 25, the expected value of r; is —0.04
rather than the true value of zero; its standard
deviation is 0.19. This results in a mean square
error of (E[r])* + Var(r;) = 0.0016 + 0.0353 =
0.0369. Clearly, the variance of r; is the domi-
nant term.

For X, values that are not independent, exact
expressions for the variance of r; generally are
not available. However, for normally distributed
X, and large n (Kendall and Stuart 1966),

+ o0

Var(r) = 1 3~ [02() 4 p, 0+ Rpali — K)
I=—00
— 4p, (k) p, (D p,(k = 1) +2p% (k) p3 (D))

(6.136)

If px(k) is essentially zero for k > g, then the
simpler expression (Box et al. 1994)

Var(r;) =

S| =

1+2zq:p§(1)] (6.137)

is valid for r; corresponding to k > g; thus for
large n, Var(r;) = I/n and values of r; will fre-
quently be outside the range of +1.65/y/n, even
though p.(k) may be zero.

If px(k) = p*, Eq. 6.137 reduces to

(147) (1~ p*)

= — 2kp*

1
Var(ry) = —
n

(6.138)
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In particular for ry, this gives

Var(ry) == (1 — p?) (6.139)

S|

Approximate values of the standard deviation
of ry for different values of n and p are given in
Table 6.11.

The estimates of r; and ry,; are highly corre-
lated for small j; this causes plots of r; versus k to
exhibit slowly varying cycles when the true
values of px(k) may be zero. This increases the
difficulty  of interpreting the  sample
autocorrelations.

6.8 Synthetic Streamflow
Generation

6.8.1 Introduction

This section is concerned primarily with ways of
generating sample data such as streamflows,
temperatures, and rainfall that are used in water
resource systems simulation studies (e.g., as
introduced in the next section). The models and
techniques discussed in this section can be used
to generate any number of quantities used as
inputs to simulation studies. For example Wilks
(1998, 2002) discusses the generation of wet and
dry days, rainfall depths on wet days, and asso-
ciated daily temperatures. The discussion here is
directed toward the generation of streamflows

Table 6.11 Approximate standard deviation of ; when observations have a normal distribution and py(k) = p*

sample

sizen p=0.0
25 0.20
50 0.14

100 0.10

correlation of consecutive observations

p=03 p=0.6
0.19 0.16
0.13 0.11
0.095 0.080
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because of the historic development and frequent
use of these models in that context (Matalas and
Wallis 1976). In addition, they are relatively
simple compared to more complete daily weather
generators and many other applications. Gener-
ated streamflows have been called synthetic to
distinguish them from historical observations
(Fiering 1967). The field has been called
stochastic hydrologic modeling. More detailed
presentations can be found in Marco et al. (1989)
and Salas (1993).

River basin simulation studies can use many
sets of streamflow, rainfall, evaporation, and/or
temperature sequences to evaluate the statistical
properties of the performance of alternative water
resources systems. For this purpose, synthetic
flows and other generated quantities should
resemble, statistically, those sequences that are
likely to be experienced during the planning
period. Figure 6.12 illustrates how synthetic
streamflow, rainfall, and other stochastic
sequences are used in conjunction with projec-
tions of future demands and other economic data
to determine how different system designs and
operating policies might perform.

Use of only the historical flow or rainfall
record in water resource studies does not allow
for the testing of alternative designs and policies
against the range of sequences that are likely to
occur in the future. We can be very confident that
the future historical sequence of flows will not be
the historical one, yet there is important
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information in that historical record. That infor-
mation is not fully used if only the historical
sequence is simulated. By fitting continuous dis-
tributions to the set of historical flows and then
using those distributions to generate other
sequences of flows, all of which are statistically
similar and equally likely, gives one a broader
range of inputs to simulation models. Testing
designs and policies against that broader range of
flow sequences that could occur more clearly
identifies the variability and range of possible
future performance indicator values. This in turn
should lead to the selection of more robust system
designs and policies.

The use of synthetic streamflows is particu-
larly useful for water resource systems having
large amounts of over-year storage. Use of only
the historical hydrologic record in system simu-
lation yields only one time history of how the
system would operate from year to year. In water
resource systems having relatively little storage
so that reservoirs and/or groundwater aquifers
refill almost every year, synthetic hydrologic
sequences may not be needed if historical
sequences of a reasonable length are available. In
this second case, a 25-year historic record pro-
vides 25 descriptions of the possible within-year
operation of the system. This may be sufficient
for many studies.

Generally, use of stochastic sequences is
thought to improve the precision with which
water resource system performance indices can

synthetic streamflow

and other sequences \

simulation model
of river basin system

system
performance

future demands /

and economic data

system design
and operating policy

I

Fig. 6.12 Structure of a simulation study, indicating the transformation of a synthetic streamflow sequence, future
demands and a system design and operating policy into system performance statistics
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be estimated, and some studies have shown this
to be the case (Vogel and Shallcross 1996; Vogel
and Stedinger 1988). In particular, if the opera-
tion of the system and performance indices have
thresholds and shape breaks, then the coarse
description provided by historical series are
likely to provide relative inaccurate estimates of
the expected values of such statistics. For
example, suppose that shortages only invoke a
nonlinear penalty function on average one year in
20. Then in a 60-year simulation there is a 19%
probability that the penalty will be invoked at
most once, and an 18% probability it will be
invoked five or more times. Thus the calculation
of the annual average value of the penalty would
be highly unreliable unless some smoothing of
the input distributions is allowed associated with
a long simulation analysis.

On the other hand, if one is only interested in
the mean flow, or average benefits that are mostly
a linear function of flows, then use of stochastic
sequences will probably add little information to
what is obtained simply by simulating the histor-
ical record. After all, the fitted models are ulti-
mately based on the information provided in the
historical record, and their use does not produce
new information about the hydrology of the basin.

If in a general sense one has available N years
of record, the statistics of that record can be used
to build a stochastic model for generating thou-
sands of years of flow. These synthetic data can
now be used to estimate more exactly the system
performance, assuming, of course, that the
flow-generating model accurately represents
nature. But the initial uncertainty in the model
parameters resulting from having only N years of
record would still remain (Schaake and Vicens
1980). An alternative is to run the historical
record (if it is sufficient complete at every site
and contains no gaps of missing data) through
the simulation model to generate N years of
output. That output series can be processed to
produce estimates of system performance. So the
question is: is it better to generate multiple input
series based on uncertain parameter values and
use those to determine average system perfor-
mance with great precision, or is it sufficient to
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just model the N-year output series that results
from simulation of the historical series?

The answer seems to depend upon how well
behaved the input and output series are. If the
simulation model is linear, it does not make
much difference. If the simulation model were
highly nonlinear, then modeling the input series
would appear to be advisable. Or if one is
developing reservoir operating policies, there is a
tendency to make a policy sufficiently complex
that it deals very well with the few droughts in
the historical record but at the same time giving a
false sense of security and likely misrepresenting
the probability of system performance failures.

Another situation where stochastic
data-generating models are useful is when one
wants to understand the impact on system per-
formance estimates of the parameter uncertainty
stemming from short historical records. In that
case, parameter uncertainty can be incorporated
into streamflow generating models so that the
generated sequences reflect both the variability
that one would expect in flows over time as well
as the uncertainty of the parameter values of the
models that describe that variability (Valdes et al.
1977; Stedinger and Taylor 1982a, b; Stedinger
Pei and Cohn 1985; Vogel and Stedinger 1988).

If one decides to use a stochastic data gener-
ator, the challenge is to use a model that appro-
priately describes the important relationships, but
does not attempt to reproduce more relationships
than are justified or that can be estimated with
available data sets.

Two basic techniques are used for streamflow
generation. If the streamflow population can be
described by a stationary stochastic process, a
process whose parameters do not change over
time, and if a long historical streamflow record
exists, then a stationary stochastic streamflow
model may be fit to the historical flows. This
statistical model can then generate synthetic
sequences that describe selected characteristics of
the historical flows. Several such models are
discussed below.

The assumption of stationarity is not always
plausible, particularly in river basins that have
experienced marked changes in  runoff
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characteristics due to changes in land cover, land
use, climate, or the use of groundwater during the
period of flow record. Similarly, if the physical
characteristics of a basin will change substan-
tially in the future, the historical streamflow
record may not provide reliable estimates of the
distribution of future unregulated flows. In the
absence of the stationarity of streamflows or a
representative historical record, an alternative
scheme is to assume that precipitation is a sta-
tionary stochastic process and to route either
historical or synthetic precipitation sequences
through an appropriate rainfall-runoff model of
the river basin.

6.8.2 Streamflow Generation Models

A statistical streamflow generation model is used
to generate streamflow data that can supplement
or replace historical streamflow data in various
analyses requiring such data. If the past flow
record is considered representative of what the
future one might be, at least for a while, then the
statistical characteristics of the historical flow
record can be used as a basis for generating new
flow data. While this may be a reasonable
assumption in the near future, changing land uses
and climate may lead to entirely different statis-
tical characteristics of future streamflows, if not
now, certainly in the more distant future. By then,
improved global climate models (GCMs) and
downscaling methods together with improved
rainfall-runoff predictions given future land use
scenarios may be a preferred way to generate
future streamflows. This section of the chapter
will focus on the use of historical records.

The first step in the construction of a statistical
streamflow generating model based on historical
flow records is to extract from the historical
streamflow record the fundamental information
about the joint distribution of flows at different sites
and at different times. A streamflow model should
ideally capture what is judged to be the fundamental
characteristics of the joint distribution of the flows.
The specification of what characteristics are fun-
damental is of primary importance.
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One may want to model as closely as possible
the true marginal distribution of seasonal flows
and/or the marginal distribution of annual flows.
These describe both how much water may be
available at different times and also how variable is
that water supply. Also, modeling the joint distri-
bution of flows at a single site in different months,
seasons, and years may be appropriate. The per-
sistence of high flows and of low flows, often
described by their correlation, affects the reliabil-
ity with which a reservoir of a given size can
provide a given yield (Fiering 1967; Lettenmaier
and Burges 1977a, b; Thyer and Kuczera 2000).
For multicomponent reservoir systems, repro-
duction of the joint distribution of flows at different
sites and at different times will also be important.

Sometimes, a streamflow model is said to
statistically resemble the historical flows if the
streamflow model produces flows with the same
mean, variance, skew coefficient, autocorrela-
tions, and/or cross-correlations as were observed
in the historic series. This definition of statistical
resemblance is attractive because it is operational
and requires that an analyst need only find a
model that can reproduce the observed statistics.
The drawback of this approach is that it shifts the
modeling emphasis away from trying to find a
good model of marginal distributions of the
observed flows and their joint distribution over
time and over space, given the available data, to
just reproducing arbitrarily selected statistics.
Defining statistical resemblance in terms of
moments may also be faulted for specifying that
the parameters of the fitted model should be
determined using the observed sample moments,
or their unbiased counterparts. Other parameter
estimation techniques, such as maximum likeli-
hood estimators, are often more efficient. Defini-
tion of resemblance in terms of moments can also
lead to confusion over whether the population
parameters should equal the sample moments, or
whether the fitted model should generate flow
sequences whose sample moments equal the
historical values—the two concepts are different
because of the biases (as discussed in Sect. 6.7) in
many of the estimators of variances and correla-
tions (Matalas and Wallis 1976; Stedinger 1980,
1981; Stedinger and Taylor 1982a).



6.8 Synthetic Streamflow Generation

For any particular river basin study, one must
determine what streamflow characteristics need
to be modeled. The decision should depend on
what characteristics are important to the opera-
tion of the system being studied, the data avail-
able, and how much time can be spared to build
and test a stochastic model. If time permits, it is
good practice to see if the simulation results are
in fact sensitive to the generation model and its
parameter values using an alternative model and
set of parameter values. If the model’s results are
sensitive to changes, then, as always, one must
exercise judgment in selecting the appropriate
model and parameter values to use.

This section presents a range of statistical
models for the generation of synthetic data. The
necessary sophistication of a data-generating
model depends on the intended use of the data.
Section 6.8.3 below presents the simple autore-
gressive Markov model for generating annual
flow sequences. This model alone is too simple
for many practical studies, but is useful for
illustrating the fundamentals of the more com-
plex models that follow. Therefore, considerable
time is spent exploring the properties of this
basic model.

Subsequent sections discuss how flows with
any marginal distribution can be produced and
present models for generating sequences of flows
that can reproduce the persistence of historical
flow sequences. Other parts of this section pre-
sent models to generate concurrent flows at
several sites and to generate seasonal or monthly
flows while preserving the characteristics of
annual flows. For those wishing to study syn-
thetic streamflow models in greater depth more
advanced material can be found in Marco et al.
(1989) and Salas (1993).

6.8.3 A Simple Autoregressive Model

A simple model of annual streamflows is the
autoregressive Markov model. The historical
annual flows g, are thought of as a particular value
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of a stationary stochastic process Q,. The genera-
tion of annual streamflows and other variables
would be a simple matter if annual flows were
independently distributed. In general, this is not the
case and a generating model for many phenomena
should capture the relationship between values in
different years or in different periods. A common
and reasonable assumption is that annual flows are
the result of a first-order Markov process.

Assume also that annual streamflows are
normally distributed. In some areas, the distri-
bution of annual flows is in fact nearly normal.
Streamflow models that produce nonnormal
streamflows are discussed as an extension of this
simple model.

The joint normal density function of two
streamflows Q, and Q,, in years y and w having
mean y, variance o>, and year-to-year correlation
p between flows is

B 1
- 2n62(1 — p2)°3
(ay — 1)°~2p(ay — 1) (@ — 1) + (g — 1)°

f((/yv (Iw)

- exp

2021 - )
(6.140)

The joint normal distribution for two random
variables with the same mean and variance
depend only on their common mean y, variance
02, and the correlation p between the two (or
equivalently the covariance pa?).

The sequential generation of synthetic stream-
flows requires the conditional distribution of the
flow in one year given the value of the flows in
previous years. However, if the streamflows are a
first-order (lag 1) Markov process, then the
dependence of the distribution of the flow in year
v + 1 on flows in previous years depends entirely
on the value of the flow in year y. In addition, if the
annual streamflows have a multivariate normal
distribution, then the conditional distribution of
0,1 is normal with mean and variance

E[Qy 110y = qy] = u+p(gy — 1)

6.141
Var(Qy+1|Qy = q}) — 0.2(1 _ pz) ( )



262

where ¢, is the value of Q, in year y. Notice that
the larger the absolute value of the correlation p
between the flows, the smaller the conditional
variance of Q,,;, which in this case does not
depend at all on the value g,.

Synthetic normally distributed streamflows
that have mean u, variance o°, and year-to-year
correlation p, are produced by the model

Oyi1=p+p(Qy— ) +Vyo/1 = p?

(6.142)

where V, is a standard normal random variable,
meaning that it has zero mean, E[V,] = 0, and

unit variance, E {Vﬂ = 1. The random variable

V, is added here to provide the variability in Q.
that remains even after Q, is known. By con-
struction, each V, is independent of past flows
O,, where w <y, and V, is independent of V,, for
w # y. These restrictions imply that

E[V,V,] =0 w#y (6.143)

and

E[(Qv—mwVy] =0 w<y (6.144)

Clearly, Qy4; will be normally distributed if
both Q, and V|, are normally distributed because
sums of independent normally distributed ran-
dom variables are normally distributed.

It is a straightforward procedure to show that
this basic model indeed produces streamflows
with the specified moments, as demonstrated
below.

Using the fact that E[V,] = 0, the conditional
mean of Q. given that Q, equals g, is

E[Qy+l|%'] = E[ﬂ"'p(‘]y — )+ Vyo/1 — Pz]
= p+plgy — 1
(6.145)

Since E{ Vi] = Var[V,] = 1, the conditional
variance of Q. is
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Var[Qy 1 1lgy] = E[{Qy+1 — E[Q,v+1|‘1y]}2|%}
=E[{u+play — 1) +Vyo /1= p?
= [u+plgy — w1}
= E[Vyo/T=p? = a*(1 - p)]
(6.146)

Thus this model produces flows with the
correct conditional mean and variance.

To compute the unconditional mean of Q,.,
one first takes the expectation of both sides of
Eq. 6.142 to obtain

E[Qy1] = u+p(E[Qy] — 1)
1

EW]ovT (6.147)

5]

where E[V,] = 0. If the distribution of stream-
flows is independent of time so that for all y,
E[Qy.1] = E[Q,] = E[Q], it is clear that (1 — p)
E[Q] = (1 = p)u or
ElQ] = u (6.148)
Alternatively, if Q, for y = 1 has mean u, then
Eq. 6.147 indicates that Q, will have mean .
Thus repeated application of the Eq. 6.147 would
demonstrate that all Q, for y > 1 have mean u.
The unconditional variance of the annual

flows can be derived by squaring both sides of
6.142 to obtain

E[(Qy 1 — 1] = E[{p(Qy — 1) + Vso /1= p}]
= PE[(Qy — )]+ 2pa /1 = p2E[(Qy — ) V)]

(6.149)

Because V, is independent of Q,, (Eq. 6.144),
the second term on the right-hand side of
Eq. 6.149 vanishes. Hence the unconditional
variance of Q satisfies

E[(Qy+1 — 1)’ = p°E[(Qy — n)*] + 0*(1 — p*)
(6.150)
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Assuming that Q,,; and Q, have the same
variance yields
2 2
E(Q-p] =0 (6.151)
so that the unconditional variance is 02, as
required.

Again, if one does not want to assume that
O,+1 and O, have the same variance, a recursive
argument can be adopted to demonstrate that if
0, has variance ¢7, then O, for y 2 1 has vari-
ance o”.

The covariance of consecutive flows is
another important issue. After all the whole idea
of building these time series models is to
describe the year-to-year correlation of the flows.
Using Eq. 6.142 one can compute that the
covariance of consecutive flows must be.

E[(Qy-H - ﬂ)(Q,v - H)} = E{[P(Qy -
+Vyo/ 1 = p2[(Qy — 1)}
= pE[(Qy — n)*] = pd*
(6.152)

where E[(Q, — w)V,] = 0 because V, and Q, are
independent (Eq. 6.144).

Over a longer time scale, another property of
this model is that the covariance of flows in year
yand y + k is

E[(Qyx — m)(Qy — )] = p*a*  (6.153)

This equality can be proven by induction. It
has already been shown for £ =0 and 1. If it is
true for k = j — 1, then

E[(Qy+j— 1)(Qy — )] = E{[p(Qy+j-1 — 1)
+Vytjm10V 1= p(Qy — 1)}
= pE[(Qy — )](Qy+j-1 — 1]
=pl"'o*) = pla’
(6.154)

where E[(Qy — t)Vy4j—1] = 0 for j = 1. Hence
Eq. 6.153 is true for any value of k.
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It is important to note that the results in
Egs. 6.145 to 6.153 do not depend on the
assumption that the random variables Q, and V,
are normally distributed. These relationships
apply to all autoregressive Markov processes of
the form in Eq. 6.142 regardless of the distribu-
tions of Q, and V.. However, if the flow Q, in year
y =1 is normally distributed with mean x and
variance o7, and if the V) are independent normally
distributed random variables with mean zero and
unit variance, then the generated O, fory > 1 will
also be normally distributed with mean x and
variance o”. The next section considers how this
and other models can be used to generate stream-
flows that have other than a normal distribution.

6.8.4 Reproducing the Marginal
Distribution

Most models for generating stochastic processes
deal directly with normally distributed random
variables. Unfortunately, flows are not always
adequately described by the normal distribution.
In fact, streamflows and many other hydrologic
data cannot really be normally distributed because
of the impossibility of negative values. In general,
distributions of hydrologic data are positively
skewed having a lower bound near zero and, for
practical purposes, an unbounded right-hand tail.
Thus they look like the gamma or lognormal dis-
tribution illustrated in Figs. 6.3 and 6.4.

The asymmetry of a distribution is often
measured by its coefficient of skewness. In some
streamflow models, the skew of the random
elements V) is adjusted so that the models gen-
erate flows with the desired mean, variance, and
skew coefficient. For the autoregressive Markov
model for annual flows

E[(Qy+1— 1)) = E|p(Qy — 1) + Vyo /T — pzr
— PEQ, — 0]
+0 (1 - e[V

(6.155)
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so that

_ E[(Q(; w’] _a 1—P2p)33/2 (6.156)

Yo

By appropriate choice of the skew of V,, the
desired skew coefficient of the annual flows can
be produced. This method has often been used to
generate flows that have approximately a gamma
distribution using V,’s with a gamma distribution
and the required skew. The resulting approxi-
mation is not always adequate (Lettenmaier and
Burges 1977a).

The alternative and generally preferred
method is to generate normal random variables
and then transform these variates to streamflows
with the desired marginal distribution. Common
choices for the distribution of streamflows are the
two-parameter and three-parameter lognormal
distributions or a gamma distribution. If Q) is a
lognormally distributed random variable, then

0y = 1+ exp(X,) (6.157)
where X, is a normal random variable; when the
lower bound 7 is zero, Q, has a two-parameter
lognormal distribution. Equation 6.157 trans-
forms the normal variates X, into lognormally
distributed streamflows. The transformation is
easily inverted to obtain

X, =In(Qy—1) forQy>rt (6.158)

where O, must be greater than its lower bound 7.
The mean, variance, skewness of X, and Q,
are related by the formulas (Matalas 1967)

1
o =T+ exp(ux + Eo'x)

o = exp(2uy + 0y)[exp(ay) — 1]
_exp(30y) — 3exp(oy) +2
[exp(a%) — 112

(6.159)

Yo

If normal variates X3 and Xj are used to
generate lognormally distributed streamflows
Qj, and Q5 at sites s and u, then the lag-k corre-
lation of the Q,’s, denoted py(k; s, u), is deter-
mined by the lag-k correlation of the X variables,
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denoted px(k; s, u), and their variances a)z((s) and

o%(u), where

exploy (k; s, ) (s)ox (u)] — 1
{exp[a}(s)] — 1} {explo} ()] — 1}
(6.160)

pQ(ka S, M) =

The correlations of the X; can be adjusted, at
least in theory, to produce the observed correla-
tions among the Q‘i variates. However, more
efficient estimates of the true correlation of the
Q; values are generally obtained by transforming
the historical flows g into their normal equiva-
lent x} = ¢n(q; — ) and using the historical

¥
correlations of these x; values as estimators of

px(k; s, u) (Stedinger 1981).

Some insight into the effect of this logarithmic
transformation can be gained by considering the
resulting model for annual flows at a single site.
If the normal variates follow the simple autore-
gressive Markov model

Xy1—p=px(Xy — )+ Vyoxy/1 — Px

(6.161)

then the corresponding Q, follow the model
(Matalas 1967)

Oy 11 = 1+ Dy{explu (1 — px)]}HQy — 1)
(6.162)

where

Dy =expl(1 - p})%oxV,]  (6.163)

The conditional mean and standard deviation
of Q,.; given that Q, =g¢q, now depend on
(¢y — ©)"*. Because the conditional mean of Q.
is no longer a linear function of g,, the stream-
flows are said to exhibit differential persistence:
low flows are now more likely to follow low
flows than high flows are to follow high flows.
This is a property often attributed to real
streamflow distributions. Models can be con-
structed to capture the relative persistence of wet
and dry periods (Matalas and Wallis 1976; Salas
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1993; Thyer and Kuczera 2000). Many weather
generators for precipitation and temperature nat-
ural include such differences by employing a
Markov chain description of the occurrence of
wet and dry days (Wilks 1998).

6.8.5 Multivariate Models

If long concurrent streamflow records can be
constructed at the several sites at which synthetic
streamflows are desired, then ideally a general
multisite streamflow model could be employed.
O’Connell (1977), Ledolter (1978), Salas et al.
(1980) and Salas (1993) discuss multivariate
models and parameter estimation. Unfortunately,
model identification (parameter value estimation)
is very difficult for the general multivariate
models.

This section illustrates how the basic uni-
variate annual flow model in Sect. 8.3 can be
generalized to the multivariate case. This exer-
cise reveals how easily multivariate models can
be constructed to reproduce specified variances
and covariances of the flow vectors of interest, or
some transformation of those values. This mul-
tisite generalization of the annual AR(l) or
autoregressive Markov model follows the
approach taken by Matalas and Wallis (1976).
This general approach can be further extended to
multisite/multiseason modeling procedures, as is
done in the next section employing what have
been called disaggregation models. However,
while the size of the model matrices and vectors
increases, the models are fundamentally the same
from a mathematical viewpoint. Hence this sec-
tion starts with the simpler case of an annual flow
model.

For simplicity of presentation and clarity,

Let Z,=

,Z;)T be the column vector of trans-

vector notation is

1
(Zy,
formed zero-mean annual flows at sites s = 1,
2, ..., n, so that

employed.

E[Z{] =0 (6.164)
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In addition, let V, = (V1, ..., V{?T be a
column vector of standard normal random vari-
ables, where V; is independent of V' for (r, w) #
(s, y) and independent of past flows Z where
y 2 w. The assumption that the variables have
zero mean implicitly suggests that the mean
value has already been subtracted from all the
variables. This makes the notation simpler and
eliminates the need to include a constant term in
the models. With all the variables having zero
mean, one can focus on reproducing the vari-
ances and covariances of the vectors included in
a model.

A sequence of synthetic flows can be gener-
ated by the model

Z,. ,=AZ,+BV, (6.165)
where A and B are (n X n) matrices whose ele-
ments are chosen to reproduce the lag 0 and lag 1
cross-covariances of the flows at each site. The
lag 0 and lag 1 covariances and cross-covariances
can most economically be manipulated by use of
the two matrices Sy and S;; the lag-zero covari-
ance matrix, denoted S, is defined as

So = E[Z,Z}) (6.166)

and has elements

Soli,j) = E[z;'zﬂ (6.167)

The lag-one covariance matrix, denoted S;, is
defined as

Si = E[Zy,\Z]] (6.168)
and has elements
Si(i,j) = E[Z;+ lz;} (6.169)

The covariances do not depend on y because
the streamflows are assumed to be stationary.

Matrix S; contains the lag 1 covariances and
lag 1 cross-covariances. Sy is symmetric because
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the cross covariance Sy(i, j) equals Sy(j, ©). In
general, S; is not symmetric.

The variance—covariance equations that define
the values of A and B in terms of Sy and S; are
obtained by manipulations of Eq. 6.165. Multi-
plying both sides of that equation by ZyT and
taking expectations yields

Elz,.17]] = E[az,2]| + E[BV,2]]
(6.170)

The second term on the right-hand side van-
ishes because the components of Z, and V, are
independent. Now the first term in Eq. 6.170,

E[AZ),Z}T}, is a matrix whose (i, j)th element

equals

n
E a,-kZ;‘Z)’,
k=1

The matrix with these elements is the same as
the matrix AE|Z,Z] .

Hence, A—the matrix of constants—can be
pulled through the expectation operator just as is
done in the scalar case where ElaZ, + b] = aE
[Z,] + b for fixed constants a and b.

Substituting Sy and S; for the appropriate
expectations in Eq. 6.170 yields

E

= > aE[ZZ] (6.171)
k=1

Si=AS) or A=S§S,’ (6.172)

A relationship to determine the matrix B is
obtained by multiplying both sides of Eq. 6.165
by its own transpose (this is equivalent to
squaring both sides of the scalar equation a = b)
and taking expectations to obtain

E[Z}'+ lZ;l-“Jr 1] = E[AZ¥Z;FAT} + E[AZYV;{BT]
+E[BV,Z,A"] + E[BV,V|B"]

(6.173)
The second and third terms on the right-hand

side of Eq. 6.173 vanish because the components
of Z, and V, are independent and have zero
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mean. E [V_VV}T,} equals the identity matrix
because the components of V), are independently
distributed with unit variance. Thus

So = AS)A" + BB" (6.174)

Solving of the B matrix one finds that it
should satisfy

BBT =S, — AS)AT =S, — S;S; 'S (6.175)

The last equation results from substitution of
the relationship for A given in Eq. 6.172 and the
fact that S, is symmetric; hence S, Uis
symmetric.

It should not be too surprising that the ele-
ments of B are not uniquely determined by
Eq. 6.175. The components of the random vector
V, may be combined in many ways to produce
the desired covariances as long as B satisfies
Eq. 6.175. A lower triangular matrix that satisfies
Eq. 6.175 can be calculated by Cholesky
decomposition (Young 1968; Press et al. 1986).

Matalas and Wallis (1976) call Eq. 6.165 the
lag-1 model. They did not call the lag-1 model a
Markov model because the streamflows at indi-
vidual sites do not have the covariances of an
autoregressive Markov  process given in
Eq. 6.153. They suggest an alternative model
they call the Markov model. It has the same
structure as the lag-1 model except it does not
preserve the lag-1 cross-covariances. By relaxing
this requirement, they obtain a simpler model
with fewer parameters that generates flows that
have the covariances of an autoregressive Mar-
kov process at each site. In their Markov model,
the new A matrix is simply a diagonal matrix
whose diagonal elements are the lag-1 correla-
tions of flows at each site

A = diag[p(1;i,1)] (6.176)
where p(1; i, i) is the lag-one correlation of flows
at site i.

The corresponding B matrix depends on the

new A matrix and Sy, where as before
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BBT =S, — AS)AT (6.177)

The idea of fitting time series models to each
site separately and then correlating in innovations
in those separate models to reproduce the
cross-correlation between the series is a very
general and powerful modeling idea that has seen
a number of applications with different time
series models (Matalas and Wallis 1976;
Stedinger et al. 1985; Camacho et al. 1985; Salas
1993).

6.8.6 Multiseason, Multisite Models

In most studies of surface water systems it is
necessary to consider the variations of flows
within each year. Streamflows in most areas have
within-year variations, exhibiting wet and dry
periods. Similarly, water demands for irrigation,
municipal, and industrial uses also vary, and the
variations in demand are generally out of phase
with the variation in within-year flows; more
water is usually desired when streamflows are
low and less is desired when flows are high. This
increases the stress on water delivery systems
and makes it all the more important that time
series models of streamflows, precipitation and
other hydrological variables correctly reproduce
the seasonality of hydrological processes.

This section discusses two approaches to
generating within-year flows. The first approach
is based on the disaggregation of annual flows
produced by an annual flow generator to seasonal
flows. Thus the method allows for reproduction
of both the annual and seasonal characteristics of
streamflow series. The second approach gener-
ates seasonal flows in a sequential manner, as
was done for the generation of annual flows.
Thus the models are a direct generalization of the
annual flow models already discussed.

6.8.6.1 Disaggregation Model

The disaggregation model proposed by Valencia
and Schaake (1973) and extended by Mejia and
Rousselle (1976) and Tao and Delleur (1976)
allows for the generation of synthetic flows that
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reproduce statistics both at the annual level and
at the seasonal level. Subsequent improvements
and variations are described by Stedinger and
Vogel (1984), Maheepala and Perera (1996),
Koutsoyiannis and Manetas (1996) and Tarboton
et al. (1998).

Disaggregation models can be used for either
multiseason single-site or multisite streamflow
generation. They represent a very flexible mod-
eling framework for dealing with different time
or spatial scales. Annual flows for the several
sites in question or the aggregate total annual
flow at several sites can be the input to the model
(Grygier and Stedinger 1988). These must be
generated by another model, such as those dis-
cussed in the previous sections. These annual
flows or aggregated annual flows are then dis-
aggregated to seasonal values.

T
Let Z, = (Z;, . Z{V) be the column vec-

tor of N transformed normally distributed annual
or aggregate annual flows for N separate sites or

basins. Next let X, = (Xllﬁy, oo Xp o XDy

2
X3, ..

of nT transformed normally distributed seasonal
flows X‘;y for season ¢, year y, and site s.

T
Tys = o X%,) be the column vector

Assuming that the annual and seasonal series,
Zy and Xj,, have zero mean (after the appro-
priate transformation), the basic disaggregation

model is

X, = AZ,+ BV, (6.178)
where V, is a vector of nT independent standard
normal random variables, and A and B are,
respectively, nT X N and nT X nT matrices. One
selects values of the elements of A and B to
reproduce the observed correlations among the
elements of X, and between the elements of X, and
Z,. Alternatively, one could attempt to reproduce
the observed correlations of the untransformed
flows as opposed to the transformed flows,
although this is not always possible (Hoshi et al.
1978) and often produces poorer estimates of the
actual correlations of the flows (Stedinger 1981).

The values of A and B are determined using
the matrices S, =FE [Z},Z}T,], S.=E [Z}.Z}T,],
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S = E[X‘Xf], Sy = E[X_VZ_\T,], and S, =
E [Z)X\T] where S_, was called Sy earlier. Clearly,
SIZ =S, If S,; is to be reproduced, then by
multiplying Eq. 6.178 on the right by Z| and
taking expectations, one sees that A must éatisfy

E[X,Z]] = E[Az,Z]] (6.179)

or

S.: = AS;; (6.180)
Solving for the coefficient matrix A one
obtains
A=8.S;' (6.181)
To obtain an equation that determines the
required value of the matrix B, one can multiply
both sides of Eq. 6.178 by their transpose and
take expectations to obtain
S = AS_.AT +BB” (6.182)
Thus to reproduce the covariance matrix S,
the B matrix must satisfy
BB" =S, — AS_A" (6.183)
Equations 6.181 and 6.183 for determining
A and B are completely analogous to Eqs. 6.172
and 6.175 for the A and B matrices of the lag-1
models developed earlier. However, for the dis-
aggregation model as formulated, BB™ and hence
the matrix B can actually be singular or nearly so
(Valencia and Schaake 1973). This occurs
because the real seasonal flows sum to the
observed annual flows. Thus given the annual
flow at a site and (T — 1) of the seasonal flows,
the value of the unspecified seasonal flow can be
determined by subtraction.
If the seasonal variables X7 correspond to

nonlinear transformations of the actual flows O},
then BB is generally sufficiently non-singular
that a B matrix can be obtained by Cholesky
decomposition. On the other hand, when the

model is used to generate values of X to be
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transformed into synthetic flows @, the con-
straint that these seasonal flows should sum to
the given value of the annual flow is lost. Thus
the generated annual flows (equal to the sums of
the seasonal flows) will deviate from the values
that were to have been the annual flows. Some
distortion of the specified distribution of the
annual flows results. This small distortion can be
ignored, or each year’s seasonal flows can be
scaled so that their sum equals the specified value
of the annual flow (Grygier and Stedinger 1988).
The latter approach eliminates the distortion in
the distribution of the generated annual flows by
distorting the distribution of the generated sea-
sonal flows. Koutsoyiannis and Manetas (1996)
improve upon the simple scaling algorithm by
including a step that rejects candidate vectors X,
if the required adjustment is too large and instead
generates another vector X,. This reduces the
distortion in the monthly flows that results from
the adjustment step.

The disaggregation model has substantial data
requirements. When the dimension of Z, is n and
the dimension of the generated vector X, is m,
the A matrix has mn elements. The lower diag-
onal B matrix and the symmetric S,, matrix,
upon which it depends, each have m(m + 1)/2
nonzero or nonredundant elements. For example,
when disaggregating two aggregate annual flow
series to monthly flows at five sites, n = 2 and
m=12X5=060 so that A has 120 elements
while B and S,, each have 1830 nonzero or
nonredundant parameters. As the number of sites
included in the disaggregation increases, the size
of S, and B increases rapidly. Very quickly the
model can become over parameterized, and there
will be insufficient data to estimate all parameters
(Grygier and Stedinger 1988).

In particular, one can think of Eq. 6.178 as a
series of linear models generating each monthly
flow X]fy for k=1, t=1,...,12; k=2,
t=1,..,12 uwp to k=n, t=1,...,12 that
reproduces the correlation of each X’;v with all

n annual flows, ZJ,
monthly flows. Then when one gets to the last flow
in the last month, the model will be attempting to

reproduce n + (12n — 1) = 13n — 1 annual to

and all previously generated
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monthly and cross-correlations. Because the
model implicitly includes a constant, this means
one needs k* = 13n years of data to obtain a
unique solution for this critical equation. For
n =3, k* = 39. One could say that with a record
length of 40 years, there would be only 1 degree of
freedom left in the residual model error variance
described by B. That would be unsatisfactory.
When flows at many sites or in many seasons
are required, the size of the disaggregation model
can be reduced by disaggregation of the flows in
stages and not attempting to explicitly reproduce
every season-to-season correlation by construct-
ing what have been called condensed and con-
temporaneous models (Lane 1979; Stedinger and
Vogel 1984; Gryier and Stedinger 1988;
Koutsoyiannis and Manetas 1996). Condensed
models do not attempt to reproduce the
cross-correlations among all the flow variates at
the same site within a year (Lane 1979; Stedinger
et al. 1985), whereas contemporaneous models
are like the Markov model developed earlier in
Sect. 8.5 and are essentially models developed
for individual sites whose innovation vectors V,,
have the needed cross-correlations to reproduce
the cross-correlations of the concurrent flows
(Camacho et al. 1985), as was done in Eq. 6.177.
Grygier and Stedinger (1991) describe how this
can be done for a condensed disaggregation
model without generating inconsistencies.

6.8.6.2 Aggregation Models

One can start with annual or seasonal flows, and
break them down into flows in shorter periods
representing months or weeks. Or instead one
can start with a model that describes flows and
the shortest time step included in the model; this
latter approach has been referred to as aggrega-
tion model to distinguish it from the disaggre-
gation approach.

One method for generating multiseason flow
sequences is to convert the time series of sea-
sonal flows Q,, into a homogeneous sequence of
normally distributed zero-mean unit-variance
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random variables Z,. These can then be mod-
eled by an extension of the annual flow genera-
tors that have already been discussed. This
transformation can be accomplished by fitting a
reasonable marginal distribution to the flows in
each season so as to be able to convert the
observed flows ¢, into their transformed coun-
terparts zfy, and vice versa. Particularly, when
shorter streamflow records are available, these
simple approaches may yield a reasonable model
of some streams for some studies. However, it
implicitly assumes that the standardized series is
stationary in the sense that the season-to-season
correlations of the flows do not depend on the
seasons in question. This assumption seems
highly questionable.

This theoretical difficulty with the standard-
ized series can be overcome by introducing a
separate streamflow model for each month. For
example, the classic Thomas-Fiering model
(Thomas and Fiering 1962) of monthly flows
may be written

Zivry=PiZy+1- B Viy

where the Z,,’s are standard normal random vari-
ables corresponding to the streamflow in season
tof year y, f, is the season-to-season correlation of
the standardized flows, and V;, are independent
standard normal random variables. The problem
with this model is that it often fails to reproduce
the correlation among months during a year and
thus misrepresents the risk of multi-month and
multi-year droughts (Hoshi et al. 1978).

For an aggregation approach to be attractive it
is necessary to use a model with greater persis-
tence than the Thomas-Fiering model. Time
series models that allow reproduction of different
correlation structures are the Box-Jenkins
Autoregressive-Moving average models
(Box et al. 1994). These models are presented by
the notation ARMA(p, ¢g) for a model which
depends on p previous flows, and g extra inno-
vations V,,. For example, Eq. 6.142 would be

(6.184)
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called an AR(1) or AR(1, 0) model. A simple
ARMAC(1, 1) model is

Ziy1=¢,-Zi+ Vi1 — 01V, (6.185)

The correlations of this model have the values

pr=(1=019))(¢, —01)/(1 +07 — 2¢,01)
(6.186)

for the first lag. For i > 1

pi = ¢ 'p, (6.187)
For ¢ values near one and 0 < #; < ¢; the
autocorrelations p; can decay much slower than
those of the standard AR(1) model.
The correlation function p; of general ARMA
(p, g) model

P q

Zi1 = Z¢i Zivi—it Vg1 — Zgj “Virr
i1 =1

(6.188)

is a complex function that must satisfy a number
of conditions to ensure the resultant model is
stationary and invertible (Box et al. 1994).
ARMA(p, q) models have been extended to
describe seasonal flow series by having their
coefficients depend upon the season—these are
called periodic Autoregressive-Moving average
models, or PARMA. Salas and Obeysekera
(1992), Salas and Fernandez (1993), and Claps
et al. (1993) discuss the conceptual basis of such
stochastic streamflow models. For example, Salas
and Obeysekera (1992) found that low-order
PARMA models, such as a PARMA(2,1), arise
from reasonable conceptual representations of
persistence in rainfall, runoff, and groundwater
recharge and release. Claps et al. (1993, p. 2553)
observe that the PARMA(2, 2) model which may
be needed if one wants to preserve year-to-year
correlation poses a parameter estimation challenge
(see also Rasmussen et al. 1996). The PARMA (1,
1) model is more practical and easy to extend to the
multivariate case (Hirsch 1979; Stedinger et al.
1985; Salas 1993; Rasmussen et al. 1996). Expe-
rience has shown that PARMA(1, 1) models do a
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better job of reproducing the correlation of sea-
sonal flows beyond lag one (see for example,
Bartolini and Salas 1993).

6.9 Stochastic Simulation

This section introduces stochastic simulation.
Much more detail on simulation is contained in
later parts of this chapter and in the next chapter.
Simulation is the most flexible and widely used
tool for the analysis of complex water resources
systems. Simulation is trial and error. One must
define the system being simulated, both its
design and operating policy, and then simulate it
to see how it works. If the purpose is to find the
best design and policy, many such alternatives
must be simulated.

As with optimization models, simulation
models may be deterministic or stochastic. One
of the most useful tools in water resource
systems planning is stochastic simulation.
While optimization can be used to help define
reasonable design and operating policy alter-
natives to be simulated, it takes those simula-
tions to obtain the best insights of just how
each such alternative will perform. Stochastic
simulation of complex systems on digital
computers provides planners with a way to
define the probability distribution of perfor-
mance indices of complex stochastic water
resources systems.

When simulating any system, the modeler
designs an experiment. Initial flow, storage,
and water quality conditions must be specified
if these are being simulated. For example,
reservoirs can start full, empty, or at random
representative conditions. The modeler also
determines what data are to be collected on
system performance and operation and how
they are to be summarized. The length of time
the simulation is to be run must be specified
and, in the case of stochastic simulations, the
number of runs to be made must also be
determined. These considerations are discussed
in more detail by Fishman (2001) and in other
books on simulation. The use of stochastic
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simulation and the analysis of the output of
such models are introduced here primarily in
the context of an example to illustrate what
goes into a simulation model and how one can
deal with the information that is generated.

6.9.1 Generating Random Variables
Included in any stochastic simulation model is
some provision for the generation of sequences of
random numbers that represent particular values
of events such as rainfall, streamflows, or floods.
To generate a sequence of values for a random
variable, probability distributions for the vari-
ables must be specified. Historical data and an
understanding of the physical processes are used
to select appropriate distributions and to estimate
their parameters (as discussed in Sect. 6.3.2).

Most computers have algorithms for generat-
ing random numbers uniformly distributed
between zero and one. This uniform distribution
is defined by its cdf and pdf;
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F,(u) =0 foru<o,
uforO<u<1l and 1 ifu>1
(6.189)
and
fuu)=1 if0<u<1 and O otherwise

(6.190)

These uniform random variables can then be
transformed into random variables with any
desired distribution. If Fy(g,) is the cumulative
distribution function of a random variable Q, in
period #, then Q, can be generated using the
inverse function, as

0 = F,'[U)] (6.191)
Here U, is the uniform random number used
to generate Q,. This is illustrated in Fig. 6.13.
Analytical expressions for the inverse of many
distributions, such as the normal distribution, are
not known, so that special algorithms are

Fig. 6.13 The probability
distribution of a random

Fy (a,)

variable can be inverted to |
produce values of the
random variable
g
0
0

q, —>> particular value of Q,
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employed to efficiently generate deviates with
these distributions (Fishman 2001).

6.9.2 River Basin Simulation

An example will demonstrate the use of
stochastic simulation in the design and analysis
of water resource systems. Assume that farmers
in a particular valley have been plagued by fre-
quent shortages of irrigation water. They cur-
rently draw water from an unregulated river to
which they have water rights. A government
agency has proposed construction of a
moderate-size dam on the river upstream from

Table 6.12 Projected water demand for irrigation water

year
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points where the farmers withdraw water. The
dam would be used to increase the quantity and
reliability of irrigation water available to the
farmers during the summer growing season.
After preliminary planning, a reservoir with an
active capacity of 4 X 10’ m® has been proposed
for a natural dam site. It is anticipated that because
of the increased reliability and availability of irri-
gation water, the quantity of water desired will
grow from an initial level of 3 X 10" m*/yr after
construction of the dam to 4 X 10" m*/yr within
6 years. After that, demand will grow more
slowly, to 4.5 X 10" m’/yr, the estimated maxi-
mum reliable yield. The projected demand for
summer irrigation water is shown in Table 6.12.

water

demand
(x 107m3/yr)

0 N O U1 AW N —

N — = . ey e
O WV 00 N O T A W D — O v

3.0
32
34
3.6
3.8
4.0
Gl
4.2
43
43
4.4
4.4
4.4
4.4
4.5
4.5
45
4.5
4.5
4.5
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Table 6.13 Characteristics of the river flow
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winter summer annual
mean flow 4.0 2.5 6.5 x 107m3
standard deviation 1.5 1.0 23 x 107m3
correlation of flows:
winter with following summer 0.65
summer with following winter 0.60

A simulation study will evaluate how the
system can be expected to perform over a
20-year planning period. Table 6.13 contains
statistics that describe the hydrology at the dam
site. The estimated moments are computed from
the 45-year historic record. .

Using the techniques discussed in the previ-
ous section, a Thomas-Fiering model is used to
generate 25 lognormally distributed synthetic
streamflow sequences. The statistical character-
istics of the synthetic flows are those listed in
Table 6.14. Use of only the 45-year historic flow
sequence would not allow examination of the
system’s performance over the large range of
streamflow sequences which could occur during
the 20-year planning period. Jointly, the syn-
thetic sequences should be a description of the
range of inflows that the system might experi-
ence. A larger number of sequences could be
generated.

6.9.3 The Simulation Model

The simulation model is composed primarily of
continuity constraints and the proposed operating
policy. The volume of water stored in the reser-
voir at the beginning of seasons 1 (winter) and 2

(summer) in year y are denoted by Sy, and S»,.
The reservoir’s winter operating policy is to store
as much of the winter’s inflow Q;, as possible.
The winter release R, is determined by the rule

Siy+ 01y — K if S;y+ 01y — Ryin > K
Rly = Runin if K > Sly + Qly — Ruin > 0
Sty + Oiy otherwise

(6.192)

where K is the reservoir capacity of 4 X 10" m?
and R;, is 0.50 X 10’ m3, the minimum release
to be made if possible. The volume of water in
storage at the beginning of the year’s summer
season is

Soy = 81y + 01y, — Ryy (6.193)

The summer release policy is to meet each
year’s projected demand or target release D, if
possible, so that

ng = SZy + sz — K if SZy + sz — Dy > K

=D, if 0< 85+ 0y — Dy <K
= S2 + 0», otherwise
(6.194)
This operating policy 1is illustrated in

Fig. 6.14.
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Fig. 6.14 Summer reservoir operating policy. The shaded area denotes the feasible region of reservoir releases

The volume of water in storage at the begin-
ning of the next winter season is

Siy+1 =Sy + Qs — Ryy (6.195)

6.9.4 Simulation of the Basin

The question to be addressed by this simulation
study is how well will the reservoir meet the
farmers’ water requirements. Three steps are
involved in answering this question. First, one
must define the performance criteria or indices to
be used to describe the system’s performance.
The appropriate indices will, of course, depend
on the problem at hand and the specific concerns
of the users and managers of a water resource
system. In our reservoir-irrigation system, several
indices will be used relating to the reliability with
which target releases are met and the severity of
any shortages.

The next step is to simulate the proposed
system to evaluate the specified indices. For our
reservoir-irrigation system, the reservoir’s oper-
ation was simulated 25 times using the 25 syn-
thetic streamflow sequences, each 20 years in
length. Each of the 20 simulated years consisted
of first a winter and then a summer season. At the
beginning of the first winter season, the reservoir
was taken to be empty (S;,=0 for y=1)
because construction would just have been
completed. The target release or demand for
water in each year is given in Table 6.12.

After simulating the system, one must pro-
ceed to interpret the resulting information so as
to gain an understanding of how the system
might perform both with the proposed design
and operating policy and with modifications in
either the system’s design or its operating pol-
icy. To see how this may be done, consider the
operation of our example reservoir-irrigation
system.
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Fig. 6.15 Number of
failures in each year of 25

twenty-year simulations
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The reliability p, of the target release in year
y is the probability that the target release D, is
met or exceeded in that year:
P, =Pr[Ry, > D, (6.196)
The system’s reliability is a function of the
target release D,, the hydrology of the river, the
size of the reservoir, and the operating policy of
the system. In this example, the reliability also
depends on the year in question. Figure 6.15
shows the total number of failures that occurred in
each year of the 25 simulations. In 3 of the 25
simulations, the reservoir did not contain sufficient
water after the initial winter season to meet the
demand the first summer. After year 1, few failures
occur in years 2 through 9 because of the low
demand. Surprisingly few failures occur in years
10 and 13, when demand has reached its peak; this
results because the reservoir was normally full at
the beginning of this period as a result of lower
demand in the earlier years. Starting in years 14
and after, failures occurred more frequently
because of the high demand placed on the system.
Thus one has a sense for how the reliability of the
target releases changes over time.

6.9.5 Interpreting Simulation Output

Table 6.14 contains several summary statistics of
the 25 simulations. Column 2 of the table con-
tains the average failure frequency in each

simulation, which equals the number of years the
target release was not met divided by 20, the
number of years simulated. At the bottom of
column 2 and the other columns are several
statistics that summarize the 25 values of the
different performance indices. The sample esti-
mates of the mean and variance of each index are
given as one way of summarizing the distribution
of the observations. Another approach is speci-
fication of the sample median, the approximate
interquartile range [x(), — X(20,], and/or the range
[X1) = X@s)] of the observations, where x;; is the
ith largest observation. Either set of statistics
could be used to describe the center and spread of
each index’s distribution.

Suppose that one is interested in the distri-
bution of the system’s failure frequency or,
equivalently, the reliability with which the
target can be met. Table 6.14 reports that the
mean failure rate for the 25 simulations is
0.084, implying that the average reliability over
the 20-year period is 1 — 0.084 =0.916 or
92%. The median failure rate is 0.05, implying
a median reliability of 95%. These are both
reasonable estimates of the center of the dis-
tribution of the failure frequency. Note that the
actual failure frequency ranged from O (seven
times) to 0.30. Thus the system’s reliability
ranged from 100% to as low as 70, 75, and
80% in runs 17, 8, and 11. Certainly, the
farmers are interested not only in knowing the
mean or median failure frequency but also the
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Table 6.14 Results of 25 20-year simulations

E02110Iq
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2 0.15 0.05 1.97 0.17
.3 o0 005 179 020
4 0.10 0.05 1.67 0.22
s 05 00 020 005
6 0.0 0.0 0.00 0.00
C71. o 05 129 0l0
8 0.25 0.10 4.75 0.21
.9 00 00 000 000

10 0.10 0.0 0.34 0.04
om0 00 180 ol

12 0.05 0.05 1.28 0.43
o1 05 00 053 002

14 0.10 0.0 0.88 0.11
o180 eus 005 19 0I5

16 0.05 0.0 0.23 0.05
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2 00 00 000 000
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s 00 00 000 000

24 0.0 0.0 0.00 0.00
_ 5 005 00 019 004
mean X 0.084 0.020 1.00 0.106
standard deviation of values;

Sx 0.081 0.029 1.13 0.110
median 0.05 0.00 0.76 0.10
approximate interquartile range;
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range of failure frequencies they are likely to
experience.

If one knew the form of the distribution
function of the failure frequency, one could use
the mean and standard deviation of the obser-
vations to determine a confidence interval within
which the observations would fall with some
prespecified probability. For example, if the
observations are normally distributed, there is a
90% probability that the index falls within the
interval u, £ 1.650,. Thus, if the simulated
failure rates are normally distributed, there is
about a 90% probability the actual failure rate is
within the interval X & 1.65s,. In our case this
interval  would be [0.084 — 1.65(0.081),
0.084 + 1.65(0.081)] = [—0.050, 0.218].

Clearly, the failure rate cannot be less than
zero, so that this interval makes little sense in our
example.

A more reasonable approach to describing the
distribution of a performance index whose
probability distribution function is not known is
to use the observations themselves. If the
observations are of a continuous random vari-
able, the interval [x; — Xm+1-5] provides a rea-
sonable estimate of an interval within which the
random variable falls with probability

n+l—i i n+1-2i
T on+1 n+l n+1

(6.197)

In our example, the range [x;) — x(25)] of the
25 observations is an estimate of an interval in
which a continuous random variable falls with
probability (25 + 1 — 2)/(25 + 1) = 92%, while
[X@©) — X@2o)]  corresponds  to  probability
25+ 1-2X6)/25+1)=54%.

Table 6.14 reports that for the failure fre-
quency, [xq) — X@es)] equals [0 — 0.30], while
[x©) = X0yl equals [0 — 0.15]. Reflection on
how the failure frequencies are calculated
reminds us that the failure frequency can only
take on the discrete, nonnegative values 0, 1/20,
2/20, ..., 20/20. Thus, the random variable
X cannot be less than zero. Hence, if the lower
endpoint of an interval is zero, as is the case here,
then [0 — x(] is an estimate of an interval within
which the random variable falls with a
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probability of at least k/(n + 1). For k equal to 20
and 25, the corresponding probabilities are 77
and 96%.

Often, the analysis of a simulated system’s
performance centers on the average value of
performance indices, such as the failure rate. It is
important to know the accuracy with which the
mean value of an index approximates the true
mean. This is done by the construction of con-
fidence intervals. A confidence interval is an
interval that will contain the unknown value of a
parameter with a specified probability. Confi-
dence intervals for a mean are constructed using
the ¢ statistic,

7-%_,“)(

s/

which for large n has approximately a standard
normal distribution. Certainly, n = 25 is not very
large, but the approximation to a normal distri-
bution may be sufficiently good to obtain a rough
estimate of how close the average frequency of
failure x is likely to be to u,. A 100(1 — 2a)%
confidence interval for x, is, approximately,

t

(6.198)

Sy _ Sx
X—faﬁﬁﬂxgx‘ﬂ‘xﬁ
or
0.081 0.081
0.084 — 1, [ —— ) <p, <0.084 + 1, ——
“<m>—“ <¢z—s>
(6.199)

If a=0.05 then 7z, =1.65 and Eq. 6.199
becomes 0.057 < u, < 0.11.

Hence, based on the simulation output, one
can be about 90% sure that the true mean
failure frequency lies between 5.7 and 11%.
This corresponds to a reliability between 89
and 94%. By performing additional simulations
to increase the size of n, the width of this
confidence interval can be decreased. However,
this increase in accuracy may be an illusion,
because the uncertainty in the parameters of the
streamflow model has not been incorporated
into the analysis.
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Failure frequency or system reliability
describes only one dimension of the system’s
performance. Table 6.14 contains additional
information on the system’s performance related
to the severity of shortages. Column 3 lists the
frequencies with which the shortage exceeded
20% of that year’s demand. This occurred in
approximately 2% of the years, or in 24% of the
years in which a failure occurred. Taking another
point of view, failures in excess of 20% of
demand occurred in 9 out of 25, or in 36% of the
simulation runs

Columns 4 and 5 of Table 6.14 contain two
other indices that pertain to the severity of the
failures. The total shortfall in Column 4 is cal-
culated as

where

ifQ>0

otherwise (6.200)

o= {8

The total shortfall equals the total amount by
which the target release is not met in years in
which shortages occur.

Related to the total shortfall is the average
deficit. The deficit is defined as the shortfall in
any year divided by the target release in that year.
The average deficit is

20

1 S [D2y — Ry

AD = (6.201)

where m is the number of failures (deficits) or
nonzero terms in the sum.

Both the total shortfall and the average deficit
measure the severity of shortages. The mean total
shortfall TS, equal to 1.00 for the 25 simulation
runs, is a difficult number to interpret. While no
shortage occurred in seven runs, the total short-
age was 4.7 in run 8, in which the shortfall in two
different years exceeded 20% of the target. The
median of the total shortage values, equal to
0.76, is an easier number to interpret in that one
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knows that half the time the total shortage was
greater and half the time less than this value.

The mean average deficit AD is 0.106, or
11%. However, this mean includes an average
deficit of zero in the seven runs in which no
shortages occurred. The average deficit in the
18 years in which shortages occurred is (11%)
(25/18) = 15%. The average deficit in individual
simulations in which shortages occurred ranges
from 4 to 43%, with a median of 11.5%.

After examining the results reported in
Table 6.14, the farmers might determine that the
probability of a shortage exceeding 20% of a
year’s target release is higher than they would
like. They can deal with more frequent minor
shortages, not exceeding 20% of the target, with
little economic hardship, particularly if they are
warned at the beginning of the growing season
that less than the targeted quantity of water will
be delivered. Then they can curtail their planting
or plant crops requiring less water.

In an attempt to find out how better to meet
the farmers’ needs, the simulation program was
rerun with the same streamflow sequences and a
new operating policy in which only 80% of the
growing season’s target release is provided (if
possible) if the reservoir is less than 80% full at
the end of the previous winter season. This gives
the farmers time to adjust their planting sched-
ules and may increase the quantity of water
stored in the reservoir to be used the following
year if the drought persists.

As the simulation results with the new policy
in Table 6.15 demonstrate, this new operating
policy appears to have the expected effect on the
system’s operation. With the new policy, only six
severe shortages in excess of 20% of demand
occur in the 25 twenty-year simulations, as
opposed to 10 such shortages with the original
policy. In addition, these severe shortages are all
less severe than the corresponding shortages that
occur with the same streamflow sequence when
the original policy is followed.

The decrease in the severity of shortages is
obtained at a price. The overall failure frequency
has increased from 8.4 to 14.2%. However, the
latter figure is misleading because in 14 of the 25
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Table 6.15 Results of 25 20-Year simulations with modified operating policy to avoid severe shortages

E02110Ir
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simulations, a failure occurs in the first simula-
tion year with the new policy, whereas only three
failures occur with the original policy. Of course,
these first-year failures occur because the reser-
voir starts empty at the beginning of the first
winter and often does not fill that season.

Ignoring these first-year failures, the failure
rates with the two policies over the subsequent
19 years are 8.2 and 12.0%. Thus the frequency
of failures in excess of 20% of demand is
decreased from 2.0 to 1.2% by increasing the
frequency of all failures after the first year from
8.2 to 12.0%. Reliability increases while vul-
nerability decreases. If the farmers are willing to
put up with more frequent minor shortages, it
appears they can reduce their risk of experiencing
shortages of greater severity.

The preceding discussion has ignored the
statistical issue of whether the differences
between the indices obtained in the two simula-
tion experiments are of sufficient statistical reli-
ability to support the analysis. If care is not
taken, observed changes in a performance index
from one simulation experiment to another may
be due to sampling fluctuations rather than to
modifications of the water resource system’s
design or operating policy.

As an example, consider the change that
occurred in the frequency of shortages. Let Xj;
and X,; be the simulated failure rates using the ith
streamflow sequence with the original and
modified operating policies. The random vari-
ables Y; = X;; — X; for i equal 1 through 25 are
independent of each other if the streamflow
sequences are generated independently, as they
were.

One would like to confirm that the random
variable Y tends to be negative more often than it
is positive and hence that policy 2 indeed results
in more failures overall. A direct test of this
theory is provided by the sign test. Of the 25
paired simulation runs, y; < 0 in 21 cases and
y; =0 in four cases. We can ignore the times
when y; = 0. Note that if y; < 0 and y; > 0 were
equally likely, then the probability of observing
y; <0 in all 21 cases when y; # 0 is 272! or
5 X 107" This is exceptionally strong proof that
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the new policy has increased the failure
frequency.

A similar analysis can be made of the fre-
quency with which the release is less than 80% of
the target. Failure frequencies differ in the two
policies in only four of the 25 simulation runs.
However, in all 4 cases where they differ, the
new policy resulted in fewer severe failures. The
probability of such a lopsided result, were it
equally likely that either policy would result in a
lower frequency of failures in excess of 20% of
the target, is 2% = 0.0625. This is fairly strong
evidence that the new policy indeed decreases
the frequency of severe failures.

Another approach to this problem is to ask if
the difference between the average failure rates
X1 and X, is statistically significant; that is, can
the difference between x; and x, be attributed
to the fluctuations that occur in the average of
any finite set of random variables? In this
example, the significance of the difference
between the two means can be tested using the
random variable Y; defined as X;; — X,; for
i equal 1 through 25. The mean of the observed
y;i’s is

= E xlz x21 =X — X2
25

=0. 084 0.142 = —0.058 (6.202)
and their variance is
53 =< Z x1i — X — ¥)” = (0.0400)°
(6.203)

Now if the sample size n, equal to 25 here, is
sufficiently large, then ¢ defined by

Y=ty
sy/vn

has approximately a standard normal distribution.
The closer the distribution of Y is to that of the
normal distribution, the faster the convergence of
the distribution of f is to the standard normal
distribution with increasing n. If X;; — X5; is

t = (6.204)
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normally distributed, which is not the case here,
then each Y; has a normal distribution and ¢ has
Student’s ¢-distribution.

If E[x,;] = E[xy], then uy equals zero and
upon substituting the observed values of y and s%
into Eq. 6.204, one obtains

—0.0580

f=————— =725
0.0400//25

(6.205)

The probability of observing a value of ¢ equal
to —7.25 or smaller is less than 0.1% if n is
sufficiently large that ¢ is normally distributed.
Hence it appears very improbable that v equals
Zero.

This example provides an illustration of the
advantage of wusing the same streamflow
sequences when simulating both policies. Sup-
pose that different streamflow sequences were
used in all the simulations. Then the expected
value of ¥ would not change, but its variance
would be given by

Var(Y) = E[X; — X, — (1 — )]’
= E[(X1 — u)2] = 2E[(X1 — 1) (X2 — po)]
E[(X> — H2)2]
=07 —2Cov(X1, X2) + 03,
(6.206)

where Cov(Xy, X3) = E[(X; — p1)(X2 — 2)] and
is the covariance of the two random variables.
The covariance between X; and X, will be zero if
they are independently distributed as they would
be if different randomly generated streamflow
sequences were used in each simulation. Esti-
mating ¢ and o} by their sample estimates, an
estimate of what the variance of Y would be if
Cov(X,, X,) were zero is

63 = s +s2, = (0.081)” +(0.087)*= (0.119)°
(6.207)
The actual sample estimate sy equals 0.040; if

independent streamflow sequences are used in all
simulations, sy will take a value near 0.119 rather
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than 0.040 (Eq. 6.203). A standard deviation of
0.119 yields a value of the test statistic

Yy — Uy

f= YR = 244
0.119/\/E|”Y ’

(6.208)

If ¢ is normally distributed, the probability of
observing a value less than —2.44 is about 0.8%.
This illustrates that use of the same streamflow
sequences in the simulation of both policies
allows one to better distinguish the differences in
the policies’ performance. Using the same
streamflow sequences, or other random inputs,
one can construct a simulation experiment in
which variations in performance caused by dif-
ferent random inputs are confused as little as
possible with the differences in performance
caused by changes in the system’s design or
operating policy.

6.10 Conclusions

This chapter has introduced some approaches
analysts can consider and use when working with
the randomness or uncertainty of their data. Most
of the data water resource systems analysts use is
uncertain. This uncertainty comes from not
understanding as well as we would like how our
water resource systems (including its ecosys-
tems) function as well as not being able to
forecast, perfectly, the future. It is that simple.
We do not know the exact amounts, qualities,
and their distributions over space and time of
both the supplies of water we manage and the
water demands we try to meet. We also do not
know the benefits and costs, however measured,
of any actions we take to manage both water
supply and water demand.

The chapter began with an introduction to
some probability concepts and methods for
describing random variables and parameters of
their distributions. It then reviewed some of the
commonly used probability distributions and
how to determine the distributions of sample
data, how to work with censored and partial
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duration series data, methods of regionalization,
stochastic processes and time series analyses.

The chapter concluded with an introduction to
a range of univariate and multivariate stochastic
models that are used to generate stochastic
streamflow, precipitation depths, temperatures,
and evaporation. These methods have been
widely used to generate temporal and spatial
stochastic process that serve as inputs to
stochastic simulation models for system design,
for system operations studies, and for the eval-
uation of the reliability and precision of different
estimation algorithms. The final section of this
chapter provides an example of stochastic simu-
lation, and the use of statistical methods to
summarize the results of such simulations.

This chapter is merely an introduction to some
of the tools available for use when dealing with
uncertain data. Many of the concepts introduced
in this chapter will be used in the chapters that
follow on constructing and implementing various
types of optimization, simulation, and statistical
models. The references provided in the next
section provide additional and more detailed
information.

Although many of the methods presented in
this and the following two chapters can describe
many of the characteristics and consequences of
uncertainty, it is unclear as to whether or not
society knows exactly what to do with that
information. Nevertheless there seems to be an
increasing demand from stakeholders involved in
planning processes for information related to the
uncertainty associated with the impacts predicted
by models. The challenge is not only to quantify
that uncertainty, but also to communicate it in
effective ways that inform, and not confuse, the
decision-making process.
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Exercises

6.1 Identify a water resources planning study
with which you have some familiarity.
Make a list of the basic information used
in the study and the methods used trans-
form that information into decisions, rec-
ommendations, and conclusions.

(a) Indicate the major sources of uncer-
tainty and possible error in the basic
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6.2

Weather

Wet
Dry

6.3

information and in the transformation
of that information into decisions,
recommendations, and conclusions.
In systems studies, sources of error
and uncertainty are sometimes
grouped into three categories

(b)

1. Uncertainty due to the natural
variability of rainfall, temperature,
and stream flows which affect a
system’s operation.

2. Uncertainty due to errors made in
the estimation of the models’
parameters with a limited amount
of data.

3. Uncertainty or errors introduced
into the analysis because concep-
tual and/or mathematical models
do not reflect the true nature of the
relationships being described.

Indicate, if applicable, into which category
each of the sources of error or uncertainty
you have identified falls.

The following matrix displays the joint
probabilities of different weather conditions
and of different recreation benefit levels
obtained from use of a reservoir in a state
park:

Possible recreation benefits
RB, RB,
0.10 0.20
0.10 0.30

RB;
0.10
0.20

(a) Compute the probabilities of recre-
ation levels RB,, RB,, RB3, and of dry
and wet weather.

(b) Compute the conditional probabilities P
(wetlRB)), P(RB;ldry), and P(RB,lwet).

In flood protection planning, the 100-year
flood, which is an estimate of the quantile
X0.99, 18 often used as the design flow.
Assuming that the floods in different years
are independently distributed

6.4

Price/Quantity

$5
$10

6.5
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(a) Show that the probability of at least
one 100-year flood in a 5-year period
is 0.049.

What is the probability of at least

one 100-year flood in a 100-year

period?

(c) If floods at 1000 different sites occur
independently, what is the probability
of at least one 100-year flood at some
site in any single year?

(b)

The price to be charged for water by an
irrigation district has yet to be deter-
mined. Currently it appears as if there is
as 60% probability that the price will be
$10 per unit of water and a 40% proba-
bility that the price will be $5 per unit.
The demand for water is uncertain. The
estimated probabilities of different
demands given alternative prices are as
follows:

Prob. of quantity demanded given
price

30 55 80
0.00 0.15 0.30
020 030 040

100
0.35
0.10

120
0.20
0.00

(a) What is the most likely value of future
revenue from water sales?

What are the mean and variance of
future water sales?

(c) What is the median value and in-
terquartile range of future water sales?
What price will maximize the revenue
from the sale of water?

(b)

(d)

Plot the following data on possible recre-
ation losses and irrigated agricultural
yields. Show that use of the expected
storage level or expected allocation
underestimates the expected value of the
convex function describing reservoir los-
ses while it overestimates the expected
value of the concave function describing
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crop yield. A concave function f{(x) has the
property that f(x) < fixg) + f(xo)(x — Xo)
for any xg; prove that use of AE[X]) will
always overestimate the expected value of
a concave function f{X) when X is a ran-
dom variable.

Irrigation Crop Probability of

water yield/Hectare allocation

allocation

10 6.5 0.2

20 10 0.3

30 12 0.3

40 11 0.2

Summer Decrease in Probability of

storage level

200
250
300
350
400

6.6

recreation storage level

benefits

5 0.1

2 0.2

0 0.4

1 0.2

4 0.1

12 —
Decrease
Yield — in

Benefits

10 20 30 40

Irrigation water allocation

Complications can be added to the eco-
nomic evaluation of a project by uncer-
tainty concerning the usefulness life of the
project. For example, the time at which the
useful life of a reservoir will end due to
silting is never known with certainty when
the reservoir is being planned. If the

discount rate is high and the life is rela-
tively long, the uncertainty may not very
important. However, if the life of a reser-
voir, or of a wastewater treatment facility,
or any other such project, relatively short,
the practice of using the expected life to
calculate present costs or benefits may be
misleading.In this problem, assume that a
project results in $1000 of net benefits at
the end of each year is expected to last
between 10 and 30 years. The probability
of ending at the end of each year within the
range of 11-30 is the same. Given a dis-
count rate of 10%

(a) Compute the present value of net
benefits NB,, assuming a 20-year
project life.

(b) Compare this with the expected pre-

sent net benefits E[NBg] taking
account of uncertainty in the project
lifetime.

(c) Compute the probability that the
actual present net benefits is at least
$1000 less than NB,, the benefit esti-

200 250 300 350 400

Summer Storage Level

mate based on a 20-year life.
(d) What is the chance of getting $1000
more than the original estimate NB(?

6.7 A continuous random variable that could

describe the proportion of fish or other
animals in different large samples which
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have some distinctive features is the beta
distribution whose density is (a > 0, b > 0)

_J (1 —x)ﬁ_l 0<x<1
Fxlx) = {0 otherwise

(a) Directly calculate the value of ¢ and
the mean and variance of X for
o=p0=2.

(b) In general, c¢ = 1I(a+ HIT(W)I(P),
where (o) is the gamma function
equal to (a — 1)! for integer a. Using
this information, derive the general
expression for the mean and variance of
X. To obtain a formula which gives the
values of the integrals of interest, note
that the expression for ¢ must be such
that the integral over (0, 1) of the den-
sity function is unity for any « and f.

6.8 The joint probability density of rainfall at

two places on rainy days could be descri-
bed by

2/(xty+1)" xy>0
fx,y(xay){ 0 otherwise

Calculate and graph

(a) Fxy(x, y), the joint distribution func-

tion of X and Y.

Fy(y), the marginal cumulative distri-

bution function of Y, and fy(y), the

density function of Y.

© fYIX(y|x), the conditional density func-
tion of Y given that X = x, and Fyx(y|
x), the conditional cumulative distri-
bution function of Y given that
X =x (the cumulative distribution
function is obtained by integrating the
density function).
Show that

Fyx(ylx = 0) > Fy(y)

(b)

fory >0

6.9

6.10

6.11
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Find a value of xy and y, for which
Fy|x(yo|xo) <Fy(yo)

Let X and Y be two continuous indepen-
dent random variables. Prove that

for any two real-valued functions g and
h. Then show that Cov(X, Y) = 0 if X and
Y are independent.

A frequent problem is that observations
(X, Y) are taken on such quantities as
flow and concentration and then a
derived quantity g(X, Y) such as mass
flux is calculated. Given that one has
estimates of the standard deviations of
the observations X and Y and their cor-
relation, an estimate of the standard
deviation of g(X, Y) is needed. Using a
second-order Taylor series expansion for
the mean of g(X, Y) as a function of its
partial derivatives and of the means,
variances, covariance of the X and
Y. Using a first-order approximation of g
(X, Y), obtained an estimates of the
variances of g(X, Y) as a function of its
partial derivatives and the moments of
X and Y. Note, the covariance of X and
Y equals

E[(X = px)(Y = py)] = o3y

A study of the behavior of water waves
impinging upon and reflecting off a
breakwater located on a sloping beach was
conducted in a small tank. The height
(crest-to-trough) of the waves was mea-
sured a short distance from the wave
generator and at several points along the
beach different distances from the break-
water were measured and their mean and
standard error recorded.
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Location Mean wave Standard error of

height (cm) mean (cm)

Near wave 3.32 0.06
generator

1.9 cm from 4.42 0.09
breakwater

1.9 cm from 2.59 0.09
breakwater

1.9 cm from 3.26 0.06
breakwater

6.12

6.13

At which points were the wave heights
significantly different from the height near
wave generator assuming that errors were
independent?

Of interest to the experimenter is the ratio of
the wave heights near the breakwater to the
initial wave heights in the deep water. Using
the results in Exercise 6.10, estimate the
standard error of this ratio at the three points
assuming that errors made in measuring the
height of waves at the three points and near
the wave generator are independent. At
which point does the ratio appear to be
significantly different from 1.00?

Using the results of Exercise 6.10, show
that the ratio of the mean wave heights is
probably a biased estimate of the actual
ratio. Does this bias appear to be
important?

Derive Kirby’s bound, Eq. 6.45, on the
estimate of the coefficient of skewness by
computing the sample estimates of the
skewness of the most skewed sample it
would be possible to observe. Derive also
the upper bound (n — 1)""? for the estimate
of the population coefficient of variation =
when all the observations must be
nonnegative.

The errors in the predictions of water
quality models are sometimes described
by the double exponential distribution
whose density is

F(x) = Sexp(=alx = )

—oo<x< 4+ o0

6.14

6.15

What are the maximum likelihood esti-
mates of o and S? Note that

d -1
@x_m:{ﬂ

Is there always a unique solution for 5?
Derive the equations that one would need
to solve to obtain maximum likelihood
estimates of the two parameters a and f of
the gamma distribution. Note an analytical
expression for d/(a)/da is not available so
that a closed-form expression for maxi-
mum likelihood estimate of a is not
available. What is the maximum likeli-
hood estimate of f as a function of the
maximum likelihood estimate of «?

The log-Pearson Type-IIl distribution is
often used to model flood flows. If X has a
log-Pearson Type-III distribution then

x>p
x<pf

Y=InX)—m

has a two-parameter gamma distribution
where ¢ is the lower bound of X if # > 0
and " is the upper bound of X if f < 0.
The density function of Y can be written

fr(y)dy = ([;y();)_ exp(—pBy)d(By)
0<fy<+o0

Calculate the mean and variance of X in
terms of a, £ and m. Note that

E[X"] = E[(exp(Y +m))’]
= exp(rm)E[exp(rY)]

To evaluate the required integrals
remember that the constant terms in the
definition of fy(y) ensure that the integral
of this density function must be unity for
any values of o and £ so long as a > 0 and
Sy > 0. For what values of r and 8 does
the mean of X fail to exist? How do the
values of m, o and f affect the shape and
scale of the distribution of X?
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When plotting observations to compare
the empirical and fitted distributions of
streamflows, or other variables, it is nec-
essary to assign a cumulative probability
to each observation. These are called
plotting positions. As noted in the text, for
the ith largest observation X;,

E[Fx(Xi)] =i/(n+1)

Thus the Weibull plotting position
i/(n + 1) is one logical choice. Other
commonly used plotting positions are the
Hazen  plotting  position (i — 3/8)/
(n + 1/4). The plotting position (i — 3/8)/
(n + 1/4) is a reasonable choice because
its use provides a good approximation to
the expected value of X;. In particular for
standard normal variables

EX] = @7'[(i—3/8)/(n+1/4)]

where &(-) is the cumulative distribution
function of a standard normal variable.
While much debate centers on the appro-
priate plotting position to use to estimate
pi = Fx(X;), often people fail to realize
how imprecise all such estimates must be.
Noting that

Var(p) = M,
(n+1)"(n+2)

contrast the difference between the esti-
mates p; of p; provided by these three
plotting positions and the standard devia-
tion of p;. Provide a numerical example.
What do you conclude?

The following data represent a sequence of
annual flood flows, the maximum flow
rate observed each year, for the Sebou
River at the Azib Soltane gaging station in
Morocco.

Date

03/26/33
12/11/33
11/17/34
03/13/36
12/18/36
12/15/37
04/08/39
02/04/40
02/21/41
02/25/42
12/20/42
02/29/44
12/21/44
12/24/45
05/15/47
05/11/48
05/11/49
01/01/50
12/30/50
01/26/52
01/20/53

(@)

(b)

(©)
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Maximum Date Maximum
discharge discharge
(m®/s) (m/s)

445 03/13/54 750
1410 02/27/55 603

475 04/08/56 880

978 01/03/57 485

461 12/15/58 812

362 12/23/59 1420

530 01/16/60 4090

350 01/26/61 376
1100 03/24/62 904

980 01/07/63 4120

575 12/21/63 1740

694 03/02/65 973

612 02/23/66 378

540 10/11/66 827

381 04/01/68 626

334 02/28/69 3170

670 01/13/70 2790

769 04/04/71 1130
1570 01/18/72 437

512 02/16/73 312

613

Construct a histogram of the Sebou
flood flow data to see what the flow
distribution looks like.

Calculate the mean, variance, and
sample skew. Based on Table 6.3,
does the sample skew appear to be
significantly different from zero?

Fit a normal distribution to the data
and use the Kolmogorov—Smirnov test
to determine if the fit is adequate.
Draw a quantile-quantile plot of the
fited  quantiles  F '[(i — 3/8)/
(n + 1/4)] versus the observed quan-
tiles x; and include on the graph the
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(d)

(e)

®

(@
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Kolmogorov—Smirnov  bounds on
each x;, as shown in Figs. 6.2a, b.
Repeat part (c) using a two-parameter
lognormal distribution.

Repeat part (c) using a three-parameter
lognormal distribution. The Kol-
mogorov—Smirnov  test is now

approximate if applied to log,[X; — 7],
where 7 is calculated using Eq. 6.81 or
some other method of your choice.
Repeat part (c¢) for two- and three-
parameter versions of the gamma
distribution. Again, the Kolmogorov-
Smirnov test is approximate.

A powerful test of normality is pro-
vided by the correlation test. As
described by Filliben (1975), one
should approximate p; = Fx(x;) by

1—(0.5)"" i=1
pi=4 (i—0.3175)/(n+0.365) i=2,...,
(0.5)/" i=n

Then one obtains a test for normality
by calculation of the correlation
r between the ordered observations X;
and m; the median value of the ith
largest observation in a sample of
n standard normal random variables
so that

m; = &' (p;)

where @(x) is the cumulative distribu-
tion function of the standard normal
distribution. The value of r is then

Sy (= X) (m; — m)?
\/er‘l:l (xi —%)* >iny (mj = m)*

ry =

Some significance levels for the value
of r are (Filliben 1975)

n—1

10
20
30
40
50
60

Significance level

1% 5% 10%

0.876 0.917 0.934
0.925 0.950 0.960
0.947 0.964 0.970
0.958 0.972 0.977
0.965 0.977 0.981
0.970 0.980 0.983

The probability of observing a value of
r less than the given value, where the
observations actually drawn from a
normal distribution, equals the specified
probability. Use this test to determine
whether a normal or two-parameter
lognormal distribution provides an
adequate model for these flows.

6.18 A small community is considering the

immediate expansion of its wastewater
treatment facilities so that the expanded
facility can meet the current deficit of 0.25
MGD and the anticipated growth in demand
over the next 25 years. Future growth is
expected to result in the need of an addi-
tional 0.75 MGD. The expected demand for
capacity as a function of time is

Demand = 0.25MGD + G(1 — e %)

where 7 is the time in years and G = 0.75
MGD. The initial capital costs and main-
tenance and operating costs related to
capital are $1.2 X 10° C*7° where C is the
plant capacity (MGD). Calculate the
loss Primary>Loss of economic efficiency
LEE and the misrepresentation of minimal
costs (MMC) that would result if a
designer incorrectly assigned G a value of
0.563 or 0.938 (+25%) when determining
the required capacity of the treatment
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plant. [Note: When evaluating the true
cost of a nonoptimal design which pro-
vides insufficient capacity to meet demand
over a 25-year period, include the cost of
building a second treatment plant; use an
interest rate of 7% per year to calculate the
present value of any subsequent expan-
sions.] In this problem, how important is
an error in G compared to an error in the
elasticity of costs equal to 0.70?
One MGD, a million gallons per day, is
equivalent to 0.0438 m?/s.

A municipal water utility is planning the
expansion of their water acquisition sys-
tem over the next 50 years. The demand
for water is expected to grow and is given
by

D = 101(1 — 0.0067)

where ¢ is the time in years. It is expected
that two pipelines will be installed along
an acquired right-of-way to bring water to
the city from a distant reservoir. One pipe
will be installed immediately and then a
second pipe when the demand just equals
the capacity C in year ¢ is

PV = (a+ pC")e™"

where
a=129.5
p=52
y=0.5
r =0.07/year

Using a 50-year planning horizon, what is
the capacity of the first pipe which min-
imizes the total present value of the
construction of the two pipelines? When
is the second pipe built? If a & 25% error

6.20
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is made in estimating y or r, what are the
losses of economic efficiency (LEE) and
the misrepresentation of minimal costs
(MMC)? When finding the optimal deci-
sion with each set of parameters, find the
time of the second expansion to the
nearest year; a computer program that
finds the total present value of costs as a
function of the time of the second
expansion ¢ for =1, ..., 50 would be
helpful. (A second pipe need not be
built.)

A national planning agency for a small
country must decide how to develop the
water resources of a region. Three devel-
opment plans have been proposed, which
are denoted d,, d», and ds. Their respective
costs are 200f, 100f, and 100f where f'is a
million farths, the national currency. The
national benefits which are derived from
the chosen development plan depend, in
part, on the international market for the
goods and agricultural commodities that
would be produced. Consider three possi-
ble international market outcomes, m1,, m,,
and mj3. The national benefits if develop-
ment plan 1 selected would be, respec-
tively, 400, 290, 250. The national benefits
from selection of plan 2 would be 350,
160, 120, while the benefits from selection
of plan 3 would be 250, 200, 160.

(a) Is any plan inferior or dominated?

(b) If one felt that probabilities could not
be assigned to m;, m,, and ms3 but
wished to avoid poor outcomes, what
would be an appropriate decision
criterion, and why? Which decisions

would be selected using this
criterion?
(¢) If Pr[m;] =050 and Pr[m;]=Pr

[ms] = 0.25, how would each of the
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expected net benefits and expected  Replicate Benefits
o o
regret criteria rank the decisions? Policy 1 Policy 2
. . 1 6.27 4.20
6.21 Show that if one has a choice between two
water management plans yielding benefits 2 3.95 2.58
X and Y, where X is stochastically smaller 3 4.49 3.87
than Y, then for any reasonable utility 4 5.10 5.70
function, plan Y is preferred to X. 5 5.31 4.02
6.22 A reservoir system was simulated for ¢ 7.15 6.75
100 years and the average annual benefits 6.90 421
and their variance were found to be g 6.03 413
B =493 9 6.35 3.68
10 6.95 7.45
sp = 3.23
11 7.96 6.86
Mean, X; 6.042 1.570

The correlation of annual benefits was also
calculated and is: Standard deviation 1.217 4.859
of values, s,;

k Tk
0 1.000
1 0.389 (a) Construct a 90% confidence limits for
5 0.250 each of the two means X;.
3 0.062 (b) With what confidence interval can you
state that Policy 1 produces higher
4 0.079 benefits than Policy 2 using the sign
5 0.041 test and using the z-test?
(c) If the corresponding replicate with
(a) Assume that p(l) = 0 for [ > k, com- each policy were independent, esti-
pute (using Eq. 6.137) the standard mate with what confidence one could
error of the calculated average benefits have concluded that Policy 1 produces
fork=0, 1,2, 3, 4, and 5. Also cal- higher benefits with the z-test.
culate the standard error of the calcu-
lated benefits, assuming that annual 6.24 Assume that annual streamflow at a gaging
benefits may be thought of as a site have been grouped into thr3ee cate-
stochastic process with a correlation gories or statg:s. State 1 is 5-15 m’/s, st3ate
structure p(k) = [pB(l)]k- What is the 21is 15-25 m’/s, and state 3 is 25-35 m’/s,
effect of the correlation structure and these grouping contain all the flows on
among the observed benefits on the records. The following transition proba-
standard error of their average? bilities have been computed from record:
(b) At the 90 and 95% levels, which of the .
1y are significantly different from zero, Py J
assuming that pg(l) = 0 for [ > k? 1 2 3
i 1 0.5 0.3 0.2
6.23 Replicated reservoir simulations using two 2 0.3 03 0.4
operating policies produced the following 3 0.1 0.5 0.4

results:
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Streamflow in Season

1

(a) If the flow for the current year is
between 15 and 25 m/s, what is the
probability that the annual flow
2 years from now will be in the range
25-35 m’/s?

What is the probability of a dry, an
average, and a wet year many years
from now?

(b)

A Markov chain model for the stream-
flows in two different seasons has the
following transition probabilities

Streamflow next Season 2

0-3 3-6 >6 m’/s
m>/s m>/s
0-10 m%/s 0.25 0.50 0.25
>10 m’/s 0.05 0.55 0.40

Streamflow in Season

2

Streamflow next Season 1

0-10 m*/s 210 m’/s
0-3 m’/s 0.70 0.30
3-6 m¥s 0.50 0.50
Calculate the steady-state probabilities of
the flows in each interval in each season.
6.26 Can you modify the deterministic discrete

DP reservoir operating model to include
the uncertainty, expressed as Pﬁj, of the
inflows, as in Exercise 6.257?

(Hints: The operating policy would define
the release (or final storage) in each season
as a function of not only the initial storage
but also the inflow. If the inflows change,
so might the release or final storage vol-
ume. Hence you need to discretize the
inflows as well as the storage volumes.
Both storage and inflow are state variables.
Assume for this model you can predict
with certainty the inflow in each period at
the beginning of the period. So, each node
of the network represents a known initial
storage and inflow value. You cannot
predict with certainty the following peri-
od’s flows, only their probabilities. What
does the network look like now?

6.27

Period, ¢

6.28

6.29
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Assume that there exist two possible dis-
crete flows Q;, into a small reservoir in
each of two periods ¢ each year having
probabilities P;. Find the steady-state
operating policy (release as a function of
initial reservoir volumes and current peri-
od’s inflow) for the reservoir that mini-
mizes the expected sum of squared
deviations from storage and release targets.
Limit the storage volumes to integer values
that vary from 3 to 5. Assume a storage
volume target of 4 and a release target of 2
in each period f. (Assume only integer
values of all states and decision variables
and that each period’s inflow is known at
the beginning of the period.) Find the
annual expected sum of squared deviations
from the storage and release targets.

Flows, Q;, Probabilities,

Py

i=1
0.17
0.29

i=2
0.83
0.71

This is an application of Exercise 6.26
except the flow probabilities are indepen-
dent of the previous flow.

Assume that the streamflow Q at a par-
ticular site has cumulative distribution
function Fp(g) =g/(1 +q) for g 20.
Show how to compute the mean stream-
flow, and the probability that any specified
value of streamflow, ¢, will be exceeded.
Assume that a potential water user can
withdraw water from an unregulated
stream, and that the probability distribu-
tion function Fy() of the available
streamflow @ is known. Calculate the
value of the withdrawal target T that will
maximize the expected net benefits from
the water’s use given the two short-run
benefit functions specified below.

(a) The benefits from streamflow Q when
the target is T are
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Bo+BT+9(Q~-T)

0>T
B(OIT) = {BO+ﬁT+5(Q—T)

o<T

where 6 > f>7y. In this case, the
optimal target 7" can be expressed as
a function of P = Fo(T) =Pr{Q <
T}, the probability that the random
streamflow Q will be less than or
equal to T. Prove that

P = (B—7)/(—7).
(b)

The benefits from streamflow Q when
the target is T are

B(Q|T) = By+ BT — 6(Q — T)’

A
Benefits

6.32

fact that observations are paired (i.e.,
simulation j for 11 < j < 20 in both tables
were obtained with the same streamflow
sequence) to perform the analysis with the
sign test.

(b) Use the sign test to demonstrate that the
average deficit with Policy 1 (Table 6.14)
is stochastically smaller than with Policy 2
(Table 6.15); use all simulations.

The accompanying table provides an
example of the use of non-parametric
statistics for examining the adequacy of
synthetic streamflow generators. Here the
maximum Yyield that can be supplied with
a given size reservoir is considered. The
following table gives the rank of the
maximum yield obtainable with the his-
toric flows among the set consisting of the

Jolq)

v

Flow ¢

6.30 If arandom variable is discrete, what effect

6.31

does this have on the specified confidence
of a confidence interval for the median or
any other quantile? Give an example.

(a) Use Wilcoxon test for unpaired sam-
ples to test the hypothesis that the distri-
bution of the total shortage 7S in
Table 6.14 is stochastically less than the
total shortage TS reported in Table 6.15.
Use only the data from the second 10
simulations reported in the table. Use the

historic yield and the maximum yield
achievable with 1000 synthetic sequences
of 25 different rivers in North America.

(a) Plot the histogram of the ranks for
reservoir sizes S/up = 0.85, 1.35,
2.00. (Hint: Use the intervals 0-100,
101-200, 201-300, etc.) Do the ranks
look uniformly distributed?

Rank of the Maximum Historic Yield
among 1000 Synthetic Yields
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N R e Y O N S

L O TR N T NG T N N N S [ G I N e
AL N = O O 0NN R WD = O

25

Normalized active storage, S/io

035 085 135  2.00
47 136 128 235
296 207 183 156
402 146 120 84
367 273 141 191
453 442 413 502
76 92 56 54
413 365 273 279
274 191 86 51
362 121 50 29
240 190 188 141
266 66 60 118
35 433 562 738
47 145 647 379
570 452 380 359
286 392 424 421
43 232 112 97
22 102 173 266
271 172 260 456
295 162 272 291
307 444 532 410
7 624 418 332
618 811 801 679
1 78 608 778
263 902 878 737
82 127 758 910

Source A.l. McLeod and K.W. Hipel, Critical Drought
Revisited, Paper presented at the international Symposium
on Risk and Reliability in Water Resources, Waterloo,
Ont., June 2628, 1978

(b) Do you think this streamflow genera-
tion model produces streamflows
which are consistent with the historic
flows when one uses as a criterion the
maximum possible yield? Construct a
statistical test to support your conclu-
sion and show that it does support
your conclusion. (ldea: You might
want to consider if it is equally likely
that the rank of the historical yield is

6.33
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500 and below 501 and above. You
could then use the binomial distribu-
tion to determine the significance of
the results.)

(c) Use the Kolmogrov—Smirnov test to
check if the distribution of the yields
obtainable with storage S/up = 1.35 is
significantly different from uniform
Fyu)=u for 0<u<1. How
important do you feel this result is?

Section 7.3 dismisses the bias in v)zc for
correlated X’s as unimportant to its variance.

(a) Calculate the approximate bias in v,%
for the cases corresponding to
Table 6.10 and determine if this
assertion is justified.

(b) By numerically evaluating the bias
and variance of v,zc, when n = 25,
determine if the same result holds if
pu(k) = 0.5(0.9)%, which is the auto-
correlation function of an ARMA(1,
1) process sometimes used to describe
annual streamflow series.

Consider the crop irrigation problem in
Exercise 4.31. For the given prices 30 and
25 for crop A and B, the demand for each
crop varies over time. Records of demands
show for crop A the demand ranges from 0
to 10 uniformly. There is an equal proba-
bility of that the demand will be any value
between 0 and 10. For crop B the demand
ranges from 5 units to 15 units, and the
most likely demand is 10. At least 5 units
and no more than 15 units of crop B will
be demanded. The demand for crop B can
be defined by a triangular density function,
beginning with 5, having a mean of 10 and
an upper limit of 15. Develop and solve a
model for finding the maximum expected
net revenue from both crops, assuming the
costs of additional resources are 2/unit of
water, 4/unit of land, 8/unit of fertilizer,
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6 An Introduction to Probability, Statistics, and Uncertainty

and 5/unit of labor. The cost of borrowed
money, i.e., the borrowing interest rate, is
8 percent per growing season. How does
the solution change if the resource costs
are 1/10th of those specified above?

In Sect. 6.9.2 generated synthetic stream-
flows sequences were used to simulate a
reservoir’s operation. In the example, a
Thomas-Fiering model was used to gen-
erate In(Q,,) and In(Q»,,) the logarithms of
the flows in the two seasons of each year
¥, S0 as to preserve the season-to-season
correlation of the untransformed flows.
Noting that the annual flow is the sum of
the untransformed seasonal flows Q;, and
0>,, calculate the correlation of annual
flows produced by this model. The
required data are given in Table 6.13.
(Hint: You need to first calculate the
covariance of In(Q;,) and In(Q;,.;) and
then of Oy, and Q5 ,.1).

Part of New York City’s municipal water
supply is drawn from three parallel reser-
voirs in the upper Delaware River basin.
The covariance matrix and lag-1 covari-
ance matrix, as defined in Egs. 6.166 and
6.168, were estimated based on the
50-year flow record to be (in m3/s):

20.002 21.436 6.618
So=|21.436 25.141 6.978 | = [Cov(Q}, Q)]
6.618 6978 2.505 '
6.487 6.818 1.638
Sy = [7.500 7.625 1.815
2.593 2.804 0.6753

= [COV(Q§»+ 19 Qy/)]

Other statistics of the annual flow are

Reservoir Mean Standard r

flow deviation
Pepacton 20.05 4.472 0.3243
Cannosville  23.19 5.014 0.3033

Neversink 7.12 1.583 0.2696

(a) Using these data, determine the values
of the A and B matrices of the lag 1
model defined by Eq. 6.165. Assume

that the flows are adequately modeled
by a normal distribution. A lower tri-
angular B matrix that satisfies M = BB”
may be found by equating the elements
of BB to those of M as follows:

My, = b2, — by = /My,

M>, M>,
My = b, by, — by =—— =
1 11921 L= m
M3, M3,
My = b, b,y — by = — =
3 s by vm

My = b3, + b3y — by, = /M — b3
=\/My — M3, /My,

and so forth for M,; and M;;. Note
that b; =0 for i <j and M must be
symmetric because BB’ is necessarily
symmetric.

(b) Determine A and BB for the Markov
model which would preserve the
variances and cross-covariances of the
flows at each site, but not necessarily
the lag 1 cross covariances of the
flows. Calculate the lag 1 cross-
covariances of flows generated with
your calculated A matrix.

(c) Assume that some model has been
built to generate the total annual flow
into the three reservoirs. Construct and
calculate the parameters of a disag-
gregation model that, given the total
annual inflow to all three reservoirs,
will generate annual inflows into each
of the reservoirs preserving the vari-
ances and cross-covariances of the
flows. [Hint: The necessary statistics
of the total flows can be calculated
from those of the individual flows.]

6.37 Derive the variance of an ARMA(I, 1)

process in terms of ¢; 6, and ov’. [Hint:
Multiply both sides of the equation to
obtain a second. Be careful to remember
which V;’s are independent of which Z,’s.]
The accompanying table presents a
60-year flow record for the normalized
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1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917

flows of the Gota River near Sjotop-
Vannersburg in Sweden.

(a) Fit an autoregressive Markov model to
the annual flow record.

Using your model, generate a 50-year
synthetic flow record. Demonstrate the
mean, variance, and correlation of your
generated flows deviate from the spec-
ified values no more than would be
expected as a result of sampling error.
Calculate the autocorrelations and par-
tial autocovariances of the annual flows
for a reasonable number of lags. Calcu-
late the standard errors of the calculated
values. Determine reasonable value of
p and g for an ARMA(p, g) model of the
flows. Determine the parameter values
for the selected model.

(b)

(©)

Annual Flows, Gota River near
Sjotop-Vannersburg, Sweden
1.158 1918 0.948 1938 0.892
1.267 1919 0.907 1939 1.020
1.013 1920 0.991 1940 0.869
0.935 1921 0.994 1941 0.772
0.662 1922 0.701 1942 0.606
0.950 1923 0.692 1943 0.739
1.120 1924 1.086 1944 0.813
0.880 1925 1.306 1945 1.173
0.802 1926 0.895 1946 0.916
0.856 1927 1.149 1947 0.880
1.080 1928 1.297 1948 0.601
0.959 1929 1.168 1949 0.720
1.345 1930 1.218 1950 0.955
1.153 1931 1.209 1951 1.186
0.929 1932 0.974 1952 1.140
1.158 1933 0.834 1953 0.992
0.957 1934 0.638 1954 1.048
0.705 1935 0.991 1955 1.123
0.905 1936 1.198 1956 0.774
1.000 1937 1.091 1957 0.769

Source V.M. Yevdjevich, Fluctuations of Wet and Dry Years,
Part I, Hydrology Paper No. 1, Colorado State University,
Fort Collins, Colo., 1963
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(d) Using the estimated model in (c),
generate a 50-year synthetic stream-
flow record and demonstrate that the
mean, variance, and show that first
autocorrelations of the synthetic flows
deviate from the modeled values by no
more than would be expected as a
result of sampling error.

(a) Assume that one wanted to preserve

the covariance matrices Sy and S; of

the flows at several site Z, using the

multivariate or vector ARMA(, 1)

model

Z,.1 =AV, —BV,

where V,, contains n independent stan-
dard normal random variables. What is
the relationship between the values of
Sp and S, and the matrices A and B?
(b) Derive estimates of the matrices A, B,
and C of the multivariate AR(2) model

Zy,1 = AZ,+BZ, | +CV,

using the covariance matrices Sg, Sj

and S,.
Create a model for the generation of
monthly flows. The generated monthly
flows should have the same marginal
distributions as were fitted to the
observed flows of record and should
reproduce (i) the month-to-month corre-
lation of the flows, (ii) the month-to-
season correlation between each monthly
flow and the total flow the previous
season, and (iii) the month-to-year cor-
relation between each monthly flow and
the total 12-month flow in the previous
year. Show how to estimate the model’s
parameters. How many parameters
does your model have? How are the
values of the seasonal model? How
do you think this model could be
improved?
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Decision-makers are increasingly willing to
consider the uncertainty associated with model
predictions of the economic, environmental, or
social impacts associated with possible decisions.
Information on uncertainty does not make
decision-making easier, but to ignore it is to
ignore reality. Incorporating what is known about
the uncertainty of input parameters and variables
used in optimization and simulation models can
help in quantifying the uncertainty in the result-
ing model output. This chapter outlines and
illustrates some approaches for doing this.

7.1 Introduction
Water resource planners and managers work in
an environment of change and uncertainty. Water
supplies are always uncertain, if not in the short
term at least in the long term. Water demands and
the multiple purposes and objectives water serve
tend to change over time, and these changes
cannot always be predicted. Many of the
parameters of models used to predict the multiple
hydrologic, economic, environmental, ecologi-
cal, and social impacts are also uncertain. Indeed,
models used to predict these impacts are, at least
in part, based on many uncertain assumptions.
This uncertainty associated with planning and
managing cannot be avoided (WWAP 2012).
To the extent that probabilities can be inclu-
ded where appropriate in models and their inputs
at least some of the uncertainty of their outputs
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can be identified and quantified. T